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Abstract—In this paper, cluster centers are defined as local
maxima in the density which is called density peaks. We
use an algorithm based on density peaks to cluster multipath
components (MPCs) whose parameters are estimated by the
space-alternating generalized expectation-maximization (SAGE)
algorithm. To validate its performance, we apply it to the data
from a channel measurement in an indoor scenario at 28 GHz
and compare it to the widely used KPowerMeans algorithm with
the same distance metric of multiple component distance (MCD).
Through the results, we find it can cluster MPCs more accurately
validated by Calinski-Harabasz (CH) and Davies-Bouldin (DB)
indices. More importantly, it overcomes the shortcoming of set-
ting the number of clusters manually because we can determine
the cluster centers automatically. Besides, the efficiency of DP
clustering is far superior to KPowerMeans because what it needs
is only a distance matrix and we only need to compute it once. At
the end, statistical analysis of clusters are presented to provide
insights in channel modeling of millimeter wave.

Index Terms—clustering algorithm, channel measurement,
channel statistical characteristics

I. INTRODUCTION

Facing the tremendous increase in the volume of mobile

data and the high data transmission rate in the coming fifth

generation (5G) wireless communication [1], an accurate but

not so complex channel model is required in 5G system design.

Because the cluster based channel modeling can maintain

accuracy while reducing complexity, it has been playing an

important role in the development of channel modeling. There-

fore, many standardized channel models like ITU-R M.2135

[2] have adopted the cluster based modeling. Besides, many

measurement results present that the multipath components

(MPCs) are distributing as clusters [3], which are defined

as a group of MPCs with similar parameters, e.g. azimuth

angle of arrival (AOA), azimuth angle of departure (AOD),

elevation angle of departure (EOD), elevation angle of arrival

(EOA), and delay. So finding clusters of MPCs accurately and

efficiently is a very attractive research topic now.

In recent years, many clustering algorithms were proposed

and the KPowerMeans algorithm is one of the most representa-

tives of them. In [4], the KPowerMeans algorithm is proposed

which considers the influence of MPC power while computing

cluster centers. Specially, in KPowerMeans algorithm, the

multipath component distance (MCD) is used to define the

distances between MPCs in [5]. However, because a MPC

is always assigned to the nearest center, the KPowerMeans

methods scale poorly with respect to the time taken to com-

plete each iteration. An inignorable shortcoming is that the

number of clusters k has to be supplied by the user. So we

use an alternative approach proposed in [6] to cluster MPCs. It

defines cluster centers as density peaks which are characterized

by a higher density than their neighbors and a relatively

large distance to higher densities. It has its basis only on the

distances between data points similar to the KPowerMeans and

can find the correct number of clusters automatically.

In this paper, we use the algorithm based on density

peaks (DP clustering) to determine the number of clusters

automatically and cluster the MPCs efficiently. To reveal the

performance and advantages of the algorithm, it is validated

using the data from the channel measurement in an indoor

scenario at 28 GHz and a comparison is made between it and

the widely used KPowerMeans algorithm. We also present

statistical analysis of clusters in this scenario to provide

reference about cluster propagation.

The rest of the paper is organized as follows. The distance

metric and DP clustering algorithm are described in Section II.

Section III introduces the measurement facilities and scenario.

Section IV shows the results including a comparison between

the algorithm and KPowerMeans and presents the statistical

analysis of clusters. Section V concludes this paper.

II. CLUSTERING ALGORITHM

A. MCD

The space-alternating generalized expectation-maximization

(SAGE) algorithm [7] is used to extract channel parame-

ters from the measured data. The MPCs to be clustered

are described in the form of [τ, θEOA, θEOD, ϕAOA, ϕAOD].
θ usually represents the elevation angle and ϕ stands for

azimuth angle. And τ is the time delay. The distances between

individual MPCs are calculated by MCD.

The delay distance between the ith and jth MPC is

MCDτ,ij = α · |τi − τj |
Δτmax

· τstd
Δτmax

(1)



In this equation, Δτmax is the maximum excess delay and

so Δτmax = maxi,j |τi − τj |. τstd is the standard deviation

of the delay values. α is a scaling factor to give the delay

suitable “importance” in the final distance function.
The angle distance is given as

MCDT/R,ij =
1

2
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The angle distance is calculated in the spherical coordinate

system for AOA and AOD likewise. The T and R represent

Tx and Rx respectively.
Finally, the total distance measure is defined as

MCDij =

√
‖ MCDT,ij ‖2+‖ MCDR,ij ‖2+MCDτ,ij

2 (3)

We can see that the MCD integrates the effects of angle of

arrival, angle of departure and delay together.

B. Two key quantities of DP clustering

The DP clustering is proposed on the basis of the assump-

tions that every cluster center is surrounded by MPCs with

smaller local density and they are relatively far from any MPCs

with a larger local density. For each MPC, we need to compute

two important quantities: the local density ρ and the distance

δ from the MPC to higher density.

We have two method to compute ρ, the first one is Cut-off

kernel:

ρi =

N∑
j=1

f (dij − dc) (4)

where f (x) =

{
1 if x < 0

0 if x ≥ 0
, N is the number of MPCs and

dc is named cutoff distance which is needed to be assigned. An

advice to choose dc is making the average number of neighbors

being around 1% to 2% of the total number of MPCs. This

percentage is a parameter to be set manually and we use

t ∈ (0, 1) to represent it. So obviously, the ρi here equals

to the number of MPCs whose distance to the ith subpath xi

is smaller than dc.

The second one is named Gaussian kernel:

ρi =

N∑
j=1

e
−
(

dij
dc

)2

(5)

We can see that the result is a discrete value when we use

Cut-off kernel and it is easy that different MPCs have the

same ρ value. So we choose to use Gaussian kernel because

the result is a continuous value when using it.

δi is the minimum distance from the ith MPC to any other

MPC with higher density:

δi = min
j:ρj>ρi

dij (6)

For the MPC with the highest density, we usually make

δi = max
j

dij .

(a) Point distribution (b) Decision graph for the data

Fig. 1. An example in two dimensions.

Here is an example shown in Fig. 1. Fig. 1 (a) shows several

points in a 2D space. Obviously the density maxima are at the

Point 1 and Point 2. δ1 equals to the biggest distance from

Point 1 because it has the largest local density. For Point 2, δ2
is the distance from it to Point1, the nearest point whose local

density is larger than its. The outliers like Point 3 are featured

by large δ but small ρ. Point 4 has a large ρ, but its δ value

is small with the cause of being close to a more dense area.

So only Point 1 and 2, who are cluster centers, have large ρ
and δ simultaneously and pop up from other points. Then we

can know how many clusters there is. So the (ρi, δi) graph

as shown in Fig. 1(b) is called Decision Graph because of its

important role in determining the cluster centers.
In addition, because ρi and δi are usually on different

orders of magnitude, we add the operation of normalization

when searching for cluster centers. To find cluster centers

automatically, we can also use another parameter γ = ρ · δ
with an appropriate threshold. There will be an obvious skip

from cluster centers to those are not cluster centers.

C. DP Clustering
1) Initialization and preprocessing: In this step, we mainly

work out the two key values, ρ and δ. To provide convenience

for the following clustering, we also need
{
qi
}N

i=1
, the de-

scending order of
{
ρi
}N

i=1
, and

{
ni

}N

i=1
which is the index

of the nearest MPC whose ρ value is larger than the ith one.

Algorithm 1 Initialization and preprocessing

1: compute dij = MCD (xi, xj);
2: compute ρi using Gaussian kernel;

3: sort
{
ρi
}N

i=1
in descending order to get

{
qi
}N

i=1
;

4: ni=0, i ∈ IS ;

5: for each i ∈ [2, N ] do
6: δqi = dmax;

7: for each j ∈ [1, i− 1] do
8: if dqi,qj < δqi then
9: δqi = dqi,qj

10: nqi = qj
11: end if
12: end for
13: end for
14: δq1 = max

j≥2
δj



2) Determine the cluster centers: We can find cluster

centers according to Decision Graph and the graph of γ as

mentioned above.

3) Cluster the MPCs that are not cluster centers: We

cluster the MPCs that are not cluster centers to the same center

with the nearest MPC whose ρ value is larger than it. So if

we traversal the MPCs with the order of qi, we only need to

cluster it to the center of nqi .

D. KPowerMeans algorithm

The steps of KPowerMeans algorithm are given briefly as

followed [4]. In this algorithm, a range [Kmin,Kmax] should

be set at first. L is the number of MPCs. Pl is the power of

the lth subpath and the meaning of x is mentioned before.

Algorithm 2 KPowerMeans clustering algorithm

1: Randomly initialize K centroid positions c
(0)
1 , ..., c

(0)
K ;

2: for i = 1 to MaxIterations do
3: Assign MPCs to cluster centroids and store indices:

4: I
(i)
l = argmin

{
Pl ·MCD

(
xl, c

(i−1)
k

)}

5: Recalculate cluster centroids: c
(i)
k =

∑
j∈c

(i)
k

(Pj ·xi)∑
j∈c

(i)
k

Pj

6: if c(i)k = c
(i−1)
k for all k = 1, ...,K then

7: break;

8: end if
9: end for

10: Return RK =
[
I(i), c

(i)
k

]

III. MEASUREMENT SCENARIO AND FACILITIES

To provide data for clustering algorithm in previous sec-

tion and validate its performance, an indoor measurement of

millimeter wave is performed.

A. Measurement Scenario

The measurement campaign was conducted in an indoor

LOS scenario of Beijing University of Posts and Telecommu-

nications (BUPT). As shown in Fig. 2, the geometric size of

the office is equal to 10.97× 6.62× 2.40m3. The transmitter

(Tx) is located in a fixed position at the northeast corner and

there are 16 receiver (Rx) locations distributing in the office.

Fig. 2. Layout of measurement environment

Fig. 3. Measure equipments

B. Measurement Facilities

The measurement campaign was conducted using a broad-

band correlator channel sounder at 28 GHz with 400 MHz

bandwidth. The Tx and Rx antennas are at the same height of

1.55 m. In order to conduct a virtual Multiple-Input Multiple-

Output (MIMO) measurement, there is a horn antenna at Rx

being rotated around with 5◦ each step in azimuth domain

and 10◦ each step in elevation domain to receive the channel

characteristics. An omni-directional antenna is fixed at Tx. The

receiver sensitivity is -70 dBm, so we use the amplifier and

low noise amplifier (LNA) at both Tx and Rx to expand the

dynamic range in the link budget. A common reference clock

source is used to synchronize Tx and Rx. What should be

specially noted is that the pseudo-random (PN) sequence with

the length of 511 is generated with the chip rate of 400 MHz

and the signal received is collected with a sampling rate of 1.2

GHz, because the effective bandwidth of the band-pass filter

is only 400 MHz. Table I shows the basic parameters of our

measurement.

TABLE I
MEASUREMENT CONFIGURATION PARAMETERS

Parameter Value
Carrier Frequency 28 GHz

PN Sequence Length 511
BandWidth 400 MHz
Tx Antenna Omni-directional
Rx Antenna Horn

Tx Ant.AZ HPBW 360◦

Rx Ant.AZ HPBW 10◦

Tx Ant.Gain 2.93 dBi
Rx Ant.Gain 25 dBi

Ant.Polarization V-to-V

IV. RESULTS

A. Decision Graph

According to (5), we can compute the local density ρ of

every MPC as shown in Fig. 4. The colors of the points and

the color bar indicate the level of ρ. We can see that there are

9 areas having a MPC who has larger ρ than its neighbors.

They are very likely to be cluster centers. Then we can plot



the Decision Graph and the graph of γ as shown in Fig. 5 to

further determine the cluster centers.
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0 0.2 0.4 0.6 0.8 1
ρ

0

0.2

0.4

0.6

0.8

1

δ

ρ

δ

(a) Decision Graph

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

index

γ

(b) Graph of γ

Fig. 5. Graph of finding cluster centers

We can find that there are 9 MPCs with relatively large ρ
and δ values simultaneously. Their γ values also step up from

all the others. Then we can set them to be cluster centers

and cluster all the MPCs with the DP clustering algorithm

mentioned above. The clustering result is showed in Fig. 6.

The clusters are plotted with different colors. Comparing Fig.

4 and Fig. 6, we can see that clusters are identified with the

center of MPCs whose local density ρ is relatively larger than

its neighbors.
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Fig. 6. The result of clustering by density peaks

B. Comparison with KPowerMeans algorithm

In channel modeling before, we often use KPowerMeans

algorithm to cluster MPCs. Here we make a comparison

between the two algorithms. Because the KPowerMeans algo-

rithm cannot determine the number of clusters k automatically,

we set it from 2 to 20 artificially and then select a good

one according to the validity indices, Calinski-Harabaz (CH)

and Davies-Bouldin (DB) [9]. Fig. 7 shows the CH and DB

index values of different k using KPowerMeans and the same

two values from the result of DP clustering algorithm. The

clustering result of KPowerMeans is showed below in Fig. 8.
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Fig. 7. CH and DB index value

−200
−100

0
100

200

−40
−20

0
20

40
0

20

40

60

80

AOAEOA

de
la

y 
(n

s)

Fig. 8. Clustering result using KPowerMeans

According to the CH and DB values shown in Fig. 7, there

are 9 clusters at this spot because higher CH and lower DB

index values means that the clusters are more intra-compact

and inter-separate [8]. Intuitively, the DP clustering and KPow-

erMeans algorithm can get the similar result using the same

distance metric. Besides, the result using the DP clustering

algorithm has a larger CH value and a close DB value than

KPowerMeans. But if we use KPowerMeans algorithm, we

might not be able to set an appropriate range of k when the

scenario is complex or get a high computational complexity

with a large range of k, while we can get the number of

clusters obviously and cluster very efficiently for the only once

computation of distance matrix using DP clustering algorithm.



So the algorithm provides a method to determine the number of

clusters automaticlly instead of setting manually and to cluster

MPCs efficiently.

C. Statistical analysis of clusters

Based on the clustering result, we get intra-cluster parame-

ters, including DS, ASA and ESA.
1) Delay Spread: DS of kth cluster can be caculated by :

μτ,k =

(
Lk∑
l=1

τl · Pl

)
/

Lk∑
l=1

Pl (7)

στ,k =

√√√√(
Lk∑
l=1

(τl − μτ,k)
2 · Pl

)
/

Lk∑
l=1

Pl (8)

τl and Pl are the delay and normalized power of the lth path

respectively. So μτ,k means the weighted average of delays in

kth cluster.

2) Angular Spread: We will get ASA and ESA of the

kth cluster after changing the τ in (7) and (8) with the

corresponding angle. The method proposed in [9] is used to

solve angle ambiguity.
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Fig. 9. Distribution of delay spread within a cluster
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Fig. 10. Distribution of ASA and ESA within a cluster

We take the logarithms of DS, ASA and ESA and fit them

using normal distribution with mean values 6.97ns, 8.08◦ and

3.18◦ respectively. That can be seen in Fig. 9 and Fig. 10.

V. CONCLUSION

In this paper, we use the clustering algorithm based on

density peaks, with MCD as the distance metric, to cluster the

MPCs successfully. As the results display, compared to the

commonly used KPowerMeans algorithm, the DP clustering

algorithm can get the same number of clusters and better

performance seen from CH and DB values as validity indices.

What is more, the algorithm overcomes the shortcoming of

being difficult to determine the number of clusters and it can

cluster the MPCs more efficiently. Besides, the intra cluster

parameters including DS, ASA and ESA are obtained and their

logarithms are all fitted well by normal distribution. These

results will be very useful for indoor channel modeling of

millimeter wave.
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