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Abstract—In this article, we introduce a statistics-based clus-
tering framework that is able to model the clustering problem
corresponding to the channel propagation characteristics and
evaluate the clustering results effectively. In the framework a
Gaussian mixture model (GMM) is employed to model the
channel multipaths. Then, we optimize the GMM parameters
with the expectation-maximization (EM) algorithm. To evaluate
the clustering results effectively, a compact index (CI) is devised,
in which both the mean and variance of the clusters are
considered. In the simulation, outdoor-to-indoor (O2I) channel
measurement data is presented to demonstrate the effectiveness
of the proposed framework.

I. INTRODUCTION

With the increasing number of antennas and the application
scenarios in the fifth generation (5G) mobile communica-
tion, the complexity of channel model increases rapidly.
The geometry-based stochastic model (GBSM) [1] which is
cluster-based is popularly used in the 5G. In the GBSM, a
cluster indicates a group of multipath components (MPCs)
with similar parameters. In the system evaluation aspect,
it is convenient to model the propagation characteristics in
terms of cluster rather than model the behavior of individual
MPCs. The clustering can also help us analyze the channel
propagation characteristics more accurately and intuitively.
The clustering has a weighty impact on channel capacity
[2]. What’s more, in [3] a channel model incorporating the
clustering with the artificial intelligence (AI) is proposed.
Therefore an effective clustering algorithm corresponding to
the MPCs propagation characteristics is necessary.

Numerous algorithms have been proposed to implement the
channel multipath clustering, such as the clustering algorithm
in the visual aspect [4], which has discovered that the de-
viation between the cluster angle spread (AS) and average
tap AS becomes narrow with the decrease of channel band-
width. Subsequently, many automatic clustering algorithms
[5] are proposed, such as the clustering characteristics in [6]
where a novel initialization is proposed, in [7] the elevation
angle domain is considered for the clustering in the 3D
MIMO channels, in [8] a modified definition of the multiple
component distance (MCD) is proposed. For the clustering
algorithms mentioned above, the Kmeans rule is employed to
find the possible clustering and then the Calinski-Harabasz
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(CH) evaluation index [6] is applied to evaluate the clustering
result. The task of Kmeans algorithm is to find the possible
clustering result using the distances between the datapoints,
then with the help of evaluation index the best result is pointed
out. While, the Kmeans clustering method and its evaluation
index are all distance-based. However, only the distance can
not catch the propagation properties of the channel multipaths.
Thus, the Kmeans framework can not accomplish the channel
clustering reasonably.

In order to carry out the channel multipath clustering with
more statistical characteristics, the Gaussian mixture model
(GMM) [9] is firstly applied to the channel clustering in the
context. The GMM supposes all the multipaths are generated
from the mixture distributions, where the multipath belongs
to a certain clustering in a strict probability meaning [10].
By taking linear integration of K Gaussian components, it
can approximate to arbitrary continuous function by using
an adequate number of Gaussian distributions and adjusting
the means and covariances as well as their coefficients. The
expectation-maximization (EM) algorithm [11], utilized to
find the GMM parameters, is a preferable choice in the
statistical signal processing. It iterates between calculating the
log-likelihood expectation (E-step) and maximizing the log-
likelihood (M-step).

On the other side, the validity criteria in the Kmeans
community are mainly based on the distance, which is lack
of sufficient statistical characteristics to evaluate the clustering
results. Besides, the scattering property of the channel mul-
tipaths obeys Gaussian distribution which accords with the
GMM clustering mechanism. Thus, the selected clusters under
the distance-based criterions may not reflect the propagation
properties of the channel multipaths. Based on the above
analysis, a compact index (CI) which evaluates the clustering
results based on the means and variances is proposed. As
the propagation characteristics of the multipath parameters
obey Gaussian distribution, which expects the clusters we
get with relative small mean to variance ratio. Moreover,
considering sufficient statistics characteristics, the CI can
uncover the inherent information of the multipath parameters
and provide appropriate explanation to the clustering result.
Thus, more reasonable clustering results can be selected under



the CI criterion. At the moment, we combine the multipath
scattering property, the GMM clustering mechanism and the
CI evaluation index together. The CI can reveal the propa-
gation characteristics of the channel multipaths and provide
appropriate explanation of the clustering result. Therefore, the
CI can select more reasonable clustering results.

The above work can be categorized into a statistics-based
clustering framework consisting of three sections: (i) a new
clustering model, the GMM, in the channel, (ii) an optimiza-
tion method that can optimize the parameters of the GMM,
(iii) a validation index that can select reasonable clusters.
Detailed contributions of our work are listed as follows:

¢ In this article, it is the first time that the GMM has
been employed to the channel multipath clustering to our
knowledge.

o Taken the mean and variance of the dataset into consid-
eration, the CI index is proposed which can evaluate the
clustering results more reasonably.

o Benefiting from the combination of the GMM clustering
mechanism, the multipath propagation properties and the
CI evaluation index, a preferable clustering performance
is expected. That is, the CI index is conformed to the
GMM clustering mechanism and the preferable clustering
results under the CI can reflect the multipath propagation
property more effectively.

This paper is organized as follows. In section II, the clus-
tering problem and the distance-based clustering framework is
described. In section III, the statistics-based clustering frame-
work is presented. Outdoor-to-indoor (O2I) channel measure-
ment data are used to highlight the statistics-based clustering
framework in section IV. Finally, the paper is concluded in
section V.

Notation: (-)T denotes the transpose of (-). |-| denotes the
Euclidean norm. The upper-right corner marked with bracket
represents the ith assessment of the variable. In this paper,
when we write p(-;6) we deem it as the likelihood function
of # and we imply the 6 are parameters. In contrary, we imply
the 6 are random variables when we write p(:|6).

II. CLUSTERING PROBLEM AND THE DISTANCE-BASED
CLUSTERING FRAMEWORK

A. Clustering Problem

Channel multipath parameters are extracted by the space-
alternating generalized expectation-maximization (SAGE)
[12] parameter estimation algorithm based on the O2I channel
measurement data. In the channel community, a cluster is
defined as a group of channel multipaths with similar param-
eters [5], including the delay (7), azimuth angle of arrival
(AOA), azimuth angle of departure (AOD), elevation angle of
arrival (EOA), elevation angle of departure (EOD) [13] and
so on. Fig. 1 shows the cluster phenomenon of the multipaths
in the propagation. The left side is the base station (BS),
the right side is the mobile station (MS). Each circle with
several dots represents one scattering region causing one group
of propagation multipaths with similar properties, called as
cluster [14].

Cluster 1

Fig. 1: The channel model between the BS and MS.

The channel of the non-line of sight (NLOS) for the nth
cluster can be modeled as
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where [ € {1,2,...,L}, L is the number of the clusters,
M is the number of multipaths in the Ith cluster, Rx and
Tx denote the receiving and transmitting ends respectively,
ng and F;’{IL are respectively the receiving and the transmit
antenna gain, AP¢ is the gain of the phase, m = 1,2, ..., M,
is the multipath index within the cluster, n,. and n; represent
respectively the receiving and transmitting antenna, fg; ., is
the Doppler frequency, and H 2f,nt, ; is the sum of M, channel
multipaths within the [th cluster.

B. The Kmeans-based Clustering Algorithm

Traditionally, we use the Kmeans algorithm to find the
possible clusters. The Kmeans finds K cluster centroids, and
then it iteratively groups the multipaths so that the distance
sum of the respective multipath is minimized over all clusters.
The MCD, which denotes the similarity of the multipaths
in the delay and angular aspects, is usually adopted in the
Kmeans. The total MCD between the ith (¢ = 1,2, ..., N) and
the jth ( = 1,2, ..., N) multipath is given by
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where AT, is the maximum difference of the delay, 754 is
the standard deviation of the delay, 6; and ¢; are the azimuth
and elevation angle respectively. Apart from the clustering
mechanism of Kmeans, it evaluates the clustering results with
the MCD which is detailedly described in section III-C. We
can category the Kmeans and its evaluation index into the
distance-based framework. Whereas, only the MCD can not
reflect the similarity of the channel multipaths effectively.
Therefore, a new clustering framework is introduced in next
section.

III. THE STATISTICS-BASED CLUSTERING
FRAMEWORK

A. The Gaussian Mixture Model

To implement the clustering with the mean and covariance
structure of channel multipaths, the GMM [9] is applied to
the channel multipath clustering. In the GMM, the channel
multipaths are described by a set of d-dimensional vector
X = {x;;i = 1,2,..., N}, where x; € R? characterizes the
ith multipath parameters of the channel. In the GMM, each
x; is assumed to be generated from one of the K Gaussian
distributions, each of which models the multipaths as follows.

- Ty—1(y
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where each component is denoted by the parameters, 8;, =
{ i, Bk k=1,1,..., K}, g is the mean, and Xy, is the co-
variance matrix. In the unsupervised learning, the parameters
of the mixture model have to be extracted from the data. If
one Gaussian component is assumed, then the estimation of
parameters reduces to a maximum likelihood (ML) estimation.

Given a set of N channel multipath samples X, the log-
likelihood of the K-component mixture model is

N K
L(X;0)= ZlOgZP(wi |, B ) e (6)
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where © = {my, i, £x }_| is the assembly of all parameters

involved in the GMM and the mixing coefficient 75 € [0, 1]

denotes the prior probability of vectors drawn from class k
K

and satisfies the constraint ) m; = 1. The ML estimation of

k=1
the GMM parameters which best models the data
O = argmax{L(X; ©)}, )
e

cannot be determined directed since we do not know which
of the component has produced z;. This issue can be solved
by the EM algorithm using an iterative scheme [15].

B. Training the GMM with the EM

To estimate the GMM parameters, the maximum log-
likelihood function is solved by the EM [11]. The maximum
log-likelihood estimation can be obtained among posterior

probability formula (6) and parameters updating formula (8)-
(11).
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The calculation of w,(;) is usually referred to as the E-step
which guesses the values of the hidden variable z()’s. Exactly
known the z(9’s, we can update the parameters of our model
in the M-step. The signal processing procedure is shown in

Table 1.

TABLE I: The operation procedure of the EM-GMM
clustering.

Input data: The maximum iteration number 7., and the
channel multipath matrix X,
Initiation: The number of multipaths NV, the
dimensionality of feature vectors d, and the mixtures K
used to generate data.
Loop body: 1. E-step: calculating the posterior
probability w,(:) as formula (8).
2. M-step: Re-estimating the parameters using
samples weighted by the posterior probabilities
as formula (9)-(11).
3. If the maximum iteration number 7,5 Or the
termination condition is reached, jumped out, if
notr =7+ 1.
Output: The parameter sets of each GMM component.

C. Validity index of the clustering

Traditional clustering algorithm (Kmeans) assigns a data-
point to a certain cluster according to the distance. Therefore,
the validity index in the Kmeans are all distance-based such
as the CH index, the Davies Bouldin (DB) index, Jaccard
Coefficient (JC), Fowlkes and Mallows (FMI) index [16] and
so on. Generally, these validity indexes will reach a uniform
conclusion on evaluating the solution. Here we only analyze
the CH index for example. The CH is defined as
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By means of the MCD formula (2), ¢r(B) and tr(W) are
given as

K
tr(B) = Ly-MCD(c,©)°, (13)
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where Lj is the number of multipaths corresponding to the
kth cluster and

c==_ 15)

However, as the multipath propagation characteristics obey
Gaussian distribution statistically, only the distance may not
reflect the similarity of the channel multipaths effectively. In
general, we expect the clusters with large mean and small
variance [17]. Considering those, we put forward the CI
which can evaluate the clustering result corresponding to the
multipath propagation property.

_ tr(B)/(K-1) 1
or = tr(W)/(L— K) é V2

. (16)

where V? is the variance of the kth cluster. We can simply
find that the former part is the CH. Both the means and
variances of the clusters are considered in the CI. Considering
sufficient statistics characteristics, CI can uncover the inherent
information of the multipath parameters and provide appro-
priate explanation to the clustering result. At the moment,
we can make a combination among the CI evaluation index,
the multipath propagation property and the GMM clustering
mechanism. When a multipath has the same distance with two
cluster centroids by chance, it will cause confusion under CH.
While, the CI index will choose the cluster within which a
small variance obtains. Besides, the cluster result is expected
to be as compact as possible, which reflects comprehensively
with both mean and variance.

IV. VALIDATION RESULTS

To compare the clustering performance of GMM and K-
means, O2I channel measurement data is used to illuminate
the GMM over Kmeans.

TABLE II: Sounder parameters.

Parameter Value
Carrier frequency [GHz] 3.5
Bandwidth [MHz] 50
Transmit power [dBm] 37
Chip frequency [MHz] 127
Code length [ns] 40
Cycle duration [ms] 9.28
Channel sampling rate [Hz]  26.983

(a)The TX antenna: UPA. (b)The RX antenna: ODA.

Fig. 2: The antenna layout in the measurement.

A. Measurement Scenario

In the measurement, the Elektrobit Prosound Sounder is
used to detect the channel information [18]. The basic param-
eters are illustrated in Table II.

As is shown in Fig. 2, a dual-polarized uniform planar
array (UPA) with 32 elements is employed at the transmitting
side (Tx). At the receiving side (Rx), the dual-polarized
omnidirectional antenna (ODA) with 56 elements is used. The
layout of the antenna arrays at Tx and Rx side is illustrated in
Fig. 2(a) and Fig. 2(b) respectively. The antenna’s parameters
are shown in Table III.

TABLE III: Antenna parameters.

UPA ODA
Number 32 56
Polarization dual dual
Space 0.5 wavelength 0.5 wavelength
Azimuth —70° ~ 70° —180° ~ 180°
Elevation —70° ~ 70° —55° ~ 90°

As is presented in Fig. 3, the measurement is conducted
in the Beijing University of Posts and Telecommunications
(BUPT). It is a O2I scenario where the Tx is fixed on a lower
building covered with plasterboard on the surface. On the Rx
side as is shown in Fig. 3(b), the antenna array is fixed on a
trolley about 1.8m height.

B. Parameter Settings

After necessary signal processing using the SAGE, we
get 74 multipaths and their corresponding parameters as
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(a)The TX scenario at outdoor. (b)The RX scenario at indoor.

Fig. 3: The measurement scenario.

the input of the clustering. In the Kmeans-based and EM-
GMM clustering, the data dimension is set to 5, that is
[T, Res DTy ORz, OTz]. As we mainly concern about the
propagation characteristics of the multipahts, the power of the
multipaths is set to unit value. In the EM algorithm, the input
data is arranged in column as X = (x1,Xa,...,Xy), where
X; = (zj1,....xjm)" indicates the data vector of the jth
(3 = 1,2,..., N) multipath. The diagonal covariance matrix is
designed for the Gaussian distributions. To avoid getting into
local optimization, 30 Monte Carlo simulations are run.

C. Clustering Comparison between EM-GMM and Kmeans

1) Clustering Comparison under the CI Index: In this
section, we will compare the CI values of the EM-GMM
clustering and Kmeans-based clustering. Firstly, we conduct a
ergodic experiment at a fixed snapshot from 3 to 16 clusters.
Then, we compare 18 different snapshots at the same sampling
site. The experiment results are illustrated as Fig. 4.

In the channel clustering area, a high CI value corresponds
to a preferable clustering result. The internal small block
diagram, in Fig. 4(a), is the enlargement of the cluster from
3 to 4.5. From Fig. 4 we can see that the CI values of the
EM-GMM clustering are mostly higher than that of Kmeans
both in different clusters of a fixed snapshot and different
snapshots at the same sampling site. Conclusion can be
drawn that the EM-GMM clustering can get more favorable
clusters with large mean to variance ratio. And a large CI
corresponds to a compact clustering result which conforms
to the scattering mechanism of the channel multipaths. The
clustering mechanism of GMM accords with the propagation
mechanism of channel multipaths, thus a evaluation index
corresponding to the above mechanism can select favorable
clustering result.

2) Clustering Comparison in the Visual Aspect: We
choose 3 parameters with largest variance ([7, ¢ .., d12]) for
the visualization. Fig. 5 shows the visualization comparison
in 6 clusters, where the same cluster is coloured the same.
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Fig. 4: The clustering results of the two algorithms.

As can be seen from Fig. 5, the Kmeans-based technique
gets chaotic clustering result, especially among [—1, 1] in the
AOA. The result can not reveal the inner structure character-
istics of the channel multipaths clearly. On the contrary, the
EM-GMM clustering obtains more clearly as well as compact
clusters. From the visual aspects, we can see that the EM-
GMM clustering can get more favorable results.

V. CONCLUSION

In this paper, we illustrated that distance-based clustering
framework can not reveal the hidden information effectively
or correspond to the propagation characteristics of the channel
multipaths reasonably. To overcome the problem mentioned
above, a statistics-based clustering framework is employed
to model the channel multipaths. Initially, the EM is used
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Fig. 5: The clustering results in the visual aspect.

to optimize the GMM parameters. Considering the mean
and variance of the multipaths, the EM-GMM clustering can
grasp the propagation properties of the channel multipaths
effectively. Furthermore, to select the results corresponding to
the clustering mechanism, the CI evaluation index is proposed.
Benefiting from the combination of GMM clustering mecha-
nism, multipath propagation properties and the CI evaluation
index, we can get a satisfactory clustering result. Validation
results illustrate that the EM-GMM clustering can get more
reasonable results in visual and quantitative analysis.
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