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for Timing Synchronization of MIMO-OFDM

Systems
Jianhua Zhang, Lei Tian, Yuning Wang, and Mengmeng Liu

Abstract—In multiple-input multiple-output orthogonal fre-
quency division multiplexing (MIMO-OFDM) systems, timing
synchronization is important in order to find the correct start
of OFDM frames and symbols at the receiver. In this paper, a
joint transmit antenna selection and maximum ratio combining
at the receiver (ST/MRC) are proposed to improve the timing
synchronization performance of MIMO-OFDM systems. In this
scheme, only the antenna with the highest channel power is
selected at the transmitter. The timing metrics of all receive
antennas are added together to realize maximum ratio combining
(MRC). In order to theoretically investigate the performance of
the proposed scheme, the timing metric based on a time-domain
repetitive synchronization sequence structure is adopted and the
closed-form expression for the correct timing probability (CTP)
in the flat fading channel is derived. Then the proposed ST/MRC
scheme for timing synchronization is applied in multipath fading
channels. The advantage of the proposed scheme for timing
synchronization is verified by simulations.

Index Terms—OFDM, MIMO, diversity, synchronization, tim-
ing.

I. INTRODUCTION

ORTHOGONAL Frequency Division Multiplexing (OFD-
M) has been widely accepted as one of the most impor-

tant techniques for the wireless communication and broadcast-
ing systems [1], e.g., IEEE802.11, IEEE802.16, digital audio
broadcasting (DAB) and digital video broadcasting terrestrial
(DVB-T) [2]–[5]. By inserting a cyclic prefix (CP) before each
transmitted symbol, OFDM system increases its robustness
against the inter-symbol interference (ISI) caused by multipath
fading channels. Moreover, OFDM can be combined with
multiple antennas at both transmitter and receiver to achieve
diversity gain and to enhance the system capacity over the
fading channel, which results in a MIMO-OFDM system [6]–
[9].
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Incorrect timing estimation will degrade the system perfor-
mance severely due to the introduction of ISI and inter-carrier-
interference (ICI). Timing synchronization aims at finding the
start of OFDM frames and symbols at the receiver. MIMO-
OFDM systems are more sensitive to synchronization errors
compared with single-input single-output (SISO)-OFDM sys-
tems [10]–[18]. Therefore, timing synchronization plays a
pivotal role in the receiver design for MIMO-OFDM systems.
[14] is the pioneering work to explore the synchronization
in SISO-OFDM systems. By detecting upon the receipt of
one training sequence consisting of two symbols, the start of
the frame and the beginning of the symbol can be acquired
rapidly and robustly. Recently, [15] carries out research about
timing synchronization over multipath fading channels. The
target of timing synchronization in multipath fading channels
is to search for the first path. By utilizing the characteris-
tics of the differential cross correlation between the training
sequences, all possible multiple taps can be found. Then
threshold based fine timing is applied to search for the first
tap among multiple delay taps. With respect to MIMO-OFDM
systems, various diversity schemes have been discussed in the
literature to improve the synchronization performance [19]–
[23]. But most of them focus on the estimation and correction
of the carrier frequency offset (CFO), which results from the
imperfect oscillator between the transmitter and the receiver.
The receiver diversity scheme for timing synchronization is
firstly proposed in [20]. References [21] and [22] present
timing synchronization by Schmidl-Cox correlation with equal
gain combining (EGC) and maximum ratio combining (MRC)
at the receiver.

While the receiver diversity for the timing synchronization
has been investigated in the literature, the application of
various transmitter diversity schemes for the timing synchro-
nization has not been exploited yet. Only maximum ratio
transmitting (MRT) for the packet detection is proposed and
it is realized by adopting the orthogonal synchronization
training sequences at the transmitter [21]. The number of
radio frequency (RF) chains in conventional MIMO systems
is equal to the total number of antennas, which has stringent
requirements for the hardware design and is of high cost.
Therefore, selection transmitting (ST) is a reasonable choice
at the transmitter to minimize the use of RF chains. It has been
proved that selection transmitting can efficiently increase the
link performance [24]. Moreover, selection transmitting at the
transmitter can be combined with maximum ratio combining
at the receiver to form ST/MRC. It has been verified that the
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outage probability of ST/MRC is proportional to the product
of number of transmit and receive antennas and full diversity
order is achieved for data transmission [25]–[27]. Up to now,
to the best of our knowledge, there is no paper applying
ST/MRC in timing synchronization of MIMO-OFDM systems.
Thus considering the advantages of ST and MRC, we bridge
the gap between ST/MRC scheme and timing synchronization
in this paper.

Moreover, this scheme is very suitable for the uplink s-
cenario of interactive broadcasting systems, since only one
RF chain is needed, then the cost and hardware limitations
of the transmitter are overcome [8]. Thus, the application of
ST/MRC will improve the timing performance and decrease
the hardware cost. In this paper, by defining the correct timing
probability (CTP), we derive the closed-form expression for
timing synchronization with ST/MRC. The analysis shows
that ST/MRC scheme can achieve a full diversity order for
the timing synchronization, thus improving the timing per-
formance greatly. Then the theoretical results for different
antenna configurations are compared. Finally we validate our
theoretical analysis by simulation results.

The main contribution of this paper is summarized as
follows.

1) This paper firstly applies ST/MRC scheme in the timing
synchronization of MIMO-OFDM systems. Specifically,
at the transmitter only one out of multiple transmit
antennas with the maximal total channel power at the re-
ceiver is selected to transmit the synchronization training
sequence. The timing metric is defined as the correlation
between the received synchronization sequence and the
corresponding complex conjugated version. Then, at the
receiver, the timing metric for each receive antenna is
combined coherently based on the MRC scheme. Thus,
the timing metric peak which indicates the beginning of
the frame can be detected with an obviously improved
signal-to-noise ratio (SNR).

2) The closed-form expressions for CTP and error timing
probability (ETP) with ST/MRC, ST only, MRT only
and MRC only in the flat fading channel are derived,
respectively. The mathematical expression proves that
the proposed ST/MRC scheme for timing synchroniza-
tion can achieve the full diversity order. Thus, the timing
performance can be greatly enhanced. These analytical
conclusions are also validated by simulations.

3) The timing synchronization by utilizing the ST/MRC
scheme in the multipath channel is also investigated.
Different from the timing detection in the flat fading
channel, there are more than one timing metric peaks in
the multipath channel, which are caused by the multiple
channel delay taps. It is necessary to empirically search
for the first arrival path after utilizing the ST/MRC
scheme. The timing performance with the ST/MRC
scheme in the multipath channel is evaluated by sim-
ulations.

The rest of the paper is organized as follows. Section II de-
scribes the MIMO-OFDM system model with the timing syn-
chronization module. Section III covers the theoretical anal-

ysis of timing synchronization performance for the proposed
ST/MRC scheme in flat fading channels. Section IV presents
the application of ST/MRC scheme for timing synchronization
in multipath fading channels. Section V demonstrates the
simulation results. Finally the conclusions are achieved.

Notation: boldface letters are used for matrices and vectors;
()

T , ()∗ and ()
H represent transpose, complex conjugate and

Hermitian (conjugate) transpose respectively; IN represents
N×N identity matrix. [·]i,j denotes i×j entry of a matrix; δ(t)
is Dirac function; |·| is modulus; f(·) means function; max(·)
denotes maximum; Γ(n) = (n − 1)! is fractional function;
j =

√
−1; E(·) is expectation of a random variable. Finally,

∀ denotes any and floor(A) indicates that the element of A is
rounded to the nearest integers less than or equal to A.

II. SYSTEM MODEL

Fig. 1 shows the structure diagram of the ST/MRC scheme
for the timing synchronization in a MIMO-OFDM system
with Nt transmit antennas and Nr receive antennas. The
timing recovery at the receiver relies on searching for the
synchronization training sequence preceding each transmission
frame as illustrated in Fig. 2. The synchronization sequence
in the frequency domain is denoted as C with one OFDM
symbol length N . The odd subcarriers are forced to zeros,
i.e., C = {C(0), 0, C(1), 0, C(2), . . . , C(N/2− 1), 0}T [14].
Then after N -point inverse fast Fourier transform (IFFT), the
synchronization training sequence in the time domain consists
of two identical halves, which is represented as:[

c
c

]
=

√
2WC, (1)

where c is an N/2×1 column vector and (1) denotes that the
synchronization training sequence has two identical halves in
the time domain;

√
2 is used to normalize the power of the

synchronization training sequence after zeros padding; W is
the N ×N IFFT transform matrix with entry ej2πnk/N at the
n-th row and the k-th column.

Fig. 1. Structure diagram of ST/MRC for timing synchronization in a MIMO-
OFDM system

Fig. 2. The frame structure

After cyclic prefix (CP) padding, digital to analog converter
(DAC) and RF module, the two identical halves are transmit-
ted over the MIMO flat fading channel. Let hi,k represent
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the channel state information (CSI) from the i-th transmit
antenna to the k-th receive antenna, which are modeled as the
independent identically distributed (i.i.d.) complex Gaussian
random variable with zero mean and the variance of 0.5 per
dimension. The amplitude of the flat fading channel |hi,k| is
Rayleigh distributed, thus, the channel power |hi,k|2 obeys the
exponential distribution as:

p|hi,k|2(x) = e−x, x ≥ 0. (2)

It is well known that the MRC scheme is to add the
independent fading channels associated with each receive
antenna coherently. We would like to utilize the MRC scheme
at the receiver to improve the timing performance. At the
same time, at the transmitter only a single transmit antenna
with the maximal total received channel power at the receiver,
denoted as iST, is selected out of Nt transmit antennas, which
is mathematically represented as:

iST = argmax
1≤i≤Nt

(
Ti =

Nr∑
k=1

|hi,k|2
)
, (3)

where Ti is the sum of the channel power between each
receive antenna and the i-th transmit antenna. The selection is
performed at the receiver. Only the value of iST is sent back
to the transmitter through a feedback channel. For example,
only one-bit overhead is feedback to the transmitter in the two-
antenna scenario and two-bit overhead is required for feedback
in the four-antenna scenario. It is assumed that there is no
feedback delay or error.

In the flat Rayleigh MIMO channel, Ti is i.i.d. chi-squared
random variable with 2Nr degrees of freedom. Its cumulative
distribution function (c.d.f.) is given by Eq. (7.19) in [28]:

PTi(x) = 1− e−x
Nr−1∑
k=0

xk

Γ(k + 1)
, x ≥ 0. (4)

Therefore, the probability density function (p.d.f.) of TiST is
given by Eq. (7.9) in [28]:

piST(x)=
Nt

Γ(Nr)

(
1−e−x

Nr−1∑
k=0

xk

Γ(k + 1)

)Nt−1

xNr−1e−x.

(5)
After passing through the channel, the received synchroniza-

tion sequence at the k-th receive antenna from the selected iST
transmit antenna is mathematically represented as:

yk(µ) = hiST,kc(µ− µ̂) + wk(µ), (6)

where µ is the discrete time shift, µ̂ is the desired timing
indicating the beginning of the frame and the start of the
OFDM symbol. Our target is to estimate the desired timing
by utilizing ST/MRC scheme and the synchronization training
sequence. wk represents the complex additive white Gaussian
noise (AWGN) with a zero mean and the variance σ2. In
this paper, we assume that the fading channel varies slowly,
remains constant within one frame and changes continuously
from one frame to another.

III. CORRECT TIMING PROBABILITY OF ST/MRC SCHEME

In this section, we will present the definition of the timing
metric and estimate the timing shift in order to finish the timing
synchronization at the receiver. The timing metric for the k-
th receive antenna is defined as the correlation between the
received two identical halves and the local complex conjugated
versions, which is shifted by N/2 samples [29]:

Mk(µ) =

N/2−1∑
d=0

c∗(d)yk(µ+ d)

∗

×

N/2−1∑
m=0

c∗(m)yk

(
µ+m+

N

2

) , (7)

where N/2 is the size of the correlation window. Substituting
(6) into (7), the timing metric for the k-th receive antenna can
be rewritten as:

Mk(µ) =

hiST,k

N/2−1∑
d=0

c∗(d)c(µ− µ̂+ d) + ηk,1(µ)

∗

×

hiST,k

N/2−1∑
m=0

c∗(m)c

(
µ− µ̂+m+

N

2

)
+ ηk,2(µ)

 ,

(8)

where ηk,1(µ) ,
∑N/2−1

d=0 c∗(d)wk(µ + d) and ηk,2(µ) ,∑N/2−1
m=0 c∗(m)wk

(
µ+m+ N

2

)
are with a zero mean and

the variance Nσ2/2. Considering the orthogonality of the
synchronization training sequence 1, i.e.,

∑N/2−1
d=0 c∗(d)c(µ+

d) = N
2 δ(µ), (8) can be rewritten as:

Mk(µ) =

[
N

2
hiST,kδ(µ− µ̂) + ηk,1(µ)

]∗
×
[
N

2
hiST,kδ(µ− µ̂) + ηk,2(µ)

]
(9)

After the mathematical manipulation, (9) is simplified as:

Mk(µ)=

(
N

2

)2

|hiST,k|2 δ(µ− µ̂)︸ ︷︷ ︸
useful signal

+ η∗k,1(µ)ηk,2(µ)︸ ︷︷ ︸
2nd−order noise

+
N

2
hiST,kη

∗
k,1(µ)δ(µ− µ̂) +

N

2
h∗
iST,kηk,2(µ)δ(µ− µ̂)︸ ︷︷ ︸

1st−order noise

.

(10)

From (10), it is observed that when the received synchro-
nization sequence correlates with the local synchronization
sequence to the maximal extent, the timing metric Mk(µ) gen-
erates a peak value but is degraded by the noise. Furthermore,
the coefficient of the useful signal at each receive antenna is

1If the auto correlation function (ACF) of the synchronization sequence is
not ideal, the self-interference term will appear, which will degrade the timing
detection performance. However, the self-interference cancelation scheme can
be used to improve the timing performance because the interference caused
by non-ideal ACF appears at the fixed known position [30]. Moreover, the
proposed ST/MRC scheme only needs one synchronization sequence at the
transmitter and looses the requirement for cross-correlation of synchronization
sequence. Thus the ideal ACF is assumed here for analysis.
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related to the sum of channel powers between the selected
transmit antenna and each receive antenna, which inspires us
to utilize the MRC scheme to improve the power of the useful
signal at the desired timing position. Thus, we combine the
timing metric for each receive antenna coherently, which is
presented as:

MMRC(µ) =

Nr∑
k=1

Mk(µ). (11)

Next, the timing shift could be detected based on the
timing metric with an aggregated SNR level. In the flat fading
channel, timing detection is quite straightforward. The time
index with the highest power in the absolute value of the
timing metric is selected as the estimated timing shift, which
is mathematically expressed as:

µ̃ = argmax
−N/2≤µ≤N/2−1

|MMRC(µ)| . (12)

Then the estimated µ̃ is forwarded to decode the frame
further. Fig. 3 shows an example of the absolute value of
the timing metric for 1 × 1 antenna configuration under the
one path spatial channel model (SCM) with the speed of 3
km/h and SNR = 0 dB [31]. Each frame is comprised of
2 OFDM symbols. The first symbol is the synchronization
training sequence. Because a single antenna is selected at the
transmitter in our proposed scheme, only one synchronization
sequence is required. Frank-Zadoff-Chu code with length
NCP = 64 is adopted as the synchronization sequence. The
simulation parameters are listed in Table I.
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Fig. 3. One example of the absolute values of timing metric over 1× 1 flat
fading channel

Fig. 3 clearly shows the correct beginning of the frame
corresponding to the time index µ̂ = 0 where the peak |M1(µ)|
locates at (indicated by the blue arrow). The value of the useful
signal locating at the desired timing position µ̂ is also plotted
in Fig. 3, which is indicated by the red arrow. It is noted that
|M1(µ)| is lower than the useful signal. The reason is that
the timing metric peak is degraded by the first and second
order noises as shown in (10). There is the second order noise
at other time shift positions. It is observed that the second
order noise is much lower than the first order noise. Thus it

is reasonable to omit the higher order noise for simplicity in
the following analysis.

However, due to the time-variant fading property of the
channel and the variation of the noise, it is possible that the
useful signal

(
N
2

)2 |hiST,k|2 is lower than the first-order noise.
Then the beginning of the frame cannot be detected correctly,
i.e., µ̃ ̸= µ̂. In order to describe the probability of the correct
timing detection quantitatively, we define the correct timing
probability (CTP) and derive the analytical CTP expressions
for some typical diversity schemes in the subsequent sections.

A. Nt = 1 and Nr = 1

In this case, by ignoring the second order noise, the absolute
value of the timing metric in (10) is simplified as

|M1(µ)| ≈

∣∣∣∣∣
(
N

2

)2

|h1,1|2 δ(µ− µ̂)

+
N

2

[
h1,1η

∗
1,1(µ) + h∗

1,1η1,2(µ)
]
δ(µ− µ̂)

∣∣∣∣ . (13)

Notice that the useful signal is the real value with the
amplification factor

(
N
2

)2
. Thus the noise term in |M1(µ)|

is much lower than the useful signal in the high SNR regime.
Then (13) can be approximately expressed as:

|M1(µ)| ≈
(
N

2

)2

|h1,1|2 δ(µ− µ̂)

+
N

2

∣∣h1,1η
∗
1,1(µ) + h∗

1,1η1,2(µ)
∣∣ δ(µ− µ̂). (14)

On the basis of (14), we define two new random variables as

U =

(
N

2

)2

|h1,1|2 , V =
N

2

∣∣h1,1η
∗
1,1(µ̂) + h∗

1,1η1,2(µ̂)
∣∣ ,

(15)
which denote the useful signal and the noise respectively. The
two variables change with time from one frame to another.
Then we introduce a new random variable Z, which is the
useful signal divided by the noise, i.e.,

Z =
U2

V 2
=

(
N
2

)4 |h1,1|4(
N
2

)2 ∣∣h1,1η∗1,1(µ̂) + h∗
1,1η1,2(µ̂)

∣∣2 . (16)

As analyzed before, only when the useful signal U emerges
from the dominating first order noise V , the estimated timing
shift in (12) is the correct timing estimation where the true
beginning of the OFDM frame locates in. That is the desired
timing can be acquired. Based on the analysis above, we define
the correct timing probability of 1 × 1 antenna configuration
as the probability that Z is larger than one. That is P (Z > 1).
It is noted that the closed-form expression for CTP in MIMO
systems is related to the distribution of Z. But it is hard to
derive this distribution due to the division operation in the
definition of Z. In order to make this problem tractable, we
utilize the average power (AP) of the noise. That is the statistic
characteristic of V 2, which is mathematically represented as:

E{V 2} =

(
N

2

)2

E
{[

h1,1η
∗
1,1(µ̂) + h∗

1,1η1,2(µ̂)
]∗

×
[
h1,1η

∗
1,1(µ̂) + h∗

1,1η1,2(µ̂)
]}

. (17)
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The noise term in (17) can be transformed into
E
{
η∗1,m(µ̂)η1,n(µ̂)

}
= Nσ2

2 δ(m − n) due to the indepen-
dence of the noise variables. CSI of the flat fading chan-
nel is considered constant within one OFDM symbol. Then
E{h1,1η

∗
1,i(µ̂)} = h1,1E{η∗1,i(µ̂)}. Eq. (17) can be rewritten

as

E{V 2} =

(
N

2

)2

|h1,1|2 E
{
|η1,1(µ̂)|2 + |η1,2(µ̂)|2

}
=

(
N

2

)2

Nσ2 |h1,1|2 . (18)

Combining the result in (17) and the distribution of |hi,k|2
in (2), we obtain the closed-form expression for the correct
timing probability P (Z > 1) as

P1×1

(
|h1,1|2 >

Nσ2

N2/4
=

4σ2

N

)
= e−

4σ2

N . (19)

For the normalized fading channel power and the signal
power, (19) can be expressed as the function of the signal to
noise ratio (SNR):

P1×1

(
|h1,1|2 >

4

N

1

SNR

)
= e−

4
N

1
SNR

≈ 1− 4

N

1

SNR
+ o

(
1

SNR

)
.

(20)

where o
(

1
SNR

)
represents the higher order noise term and

has the property lim
x→x0

o(f(x))/f(x) = 0. In (20), SNR × N
4

is the effective SNR and the gain N
4 is generated by the

synchronization sequence with the length N
2 . Assuming the

signal power is one, 1
SNR is equal to the noise power σ2. The

correct timing probability of 1 × 1 configuration is enhanced
as the noise power decreases.
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Line A: Equation (19) Result
Line B: Equation (20) Result
Line C: Simulated Result

Fig. 4. CTP comparisons for 1× 1 antenna configuration

Fig. 4 shows the performance of CTP with 1 × 1 antenna
configuration in the flat fading channel. The simulation pa-
rameters are listed in Table I. 100 drops and 1000 frames
in each drop are performed. Line A and Line B are the
theoretical performance of CTP according to (19) and (20)

respectively. Line B is the approximation of Line A. Line C is
the simulation performance of CTP. Fig. 4 shows that all of the
results (Line A, B and C) are very close. As SNR increases,
simulation result (Line C) overlaps the theoretical results
(Line A and Line B), which validates that the mathematical
expression we derive for CTP can reflect its performance
effectively.

B. ∀ Nt and ∀ Nr with ST/MRC

According to (10), the timing metric for each receive
antenna is added in order to form MRC. Then the absolute
value of the timing metric with ST/MRC is derived as

|MMRC(µ)| =

∣∣∣∣∣∣∣∣∣∣
(
N

2

)2 Nr∑
k=1

|hiST,k|2 δ(µ− µ̂)︸ ︷︷ ︸
useful signal

+o(η(µ))

+
N

2

Nr∑
k=1

[
hiST,kη

∗
k,1(µ) + h∗

iST,kηk,2(µ)
]
δ(µ− µ̂)︸ ︷︷ ︸

1st−order noise

∣∣∣∣∣∣∣∣∣∣
,

(21)

where the second order noise
∑Nr

k=1 η
∗
k,1(µ)ηk,2(µ) , o(η(µ))

is omitted in the analysis, since it is a higher order complex
gaussian random variable. Similar to the analysis in Nt =
Nr = 1 case, the new random variable is defined as:

Z =

(
N
2

)2 (∑Nr

k=1 |hiST,k|2
)2

∣∣∣∑Nr

k=1

[
hiST,kη∗k,1(µ̂) + h∗

iST,kηk,2(µ̂)
]∣∣∣2 . (22)

We adopt the same definition of CTP as P (Z > 1), which
means the useful signal at the correct timing shift µ̂ in (21)
is higher than the noise. Similar to the mathematical analysis
in case A, we utilize the statistic value of the denominator
V 2 =

∣∣∣∑Nr

k=1

[
hiST,kη

∗
k,1(µ̂) + h∗

iST,kηk,2(µ̂)
]∣∣∣2 to make the

calculation of the distribution Z tractable, which is presented
as

E{V 2} = E


[

Nr∑
k=1

[
hiST,kη

∗
k,1(µ̂) + h∗

iST,kηk,2(µ̂)
]]∗

×

[
Nr∑
k=1

[
hiST,kη

∗
k,1(µ̂) + h∗

iST,kηk,2(µ̂)
]]}

. (23)

Due to the independent noise variables,
E
{
η∗k,m(µ̂)η∗l,n(µ̂)

}
= Nσ2

2 δ(k − l)δ(m − n). The

flat fading channel indicates that E
{
hiST,k

η∗k,m(µ̂)
}

=

hiST,k
E
{
η∗k,m(µ̂)

}
. ηk,m(µ̂) is the i.i.d. Gaussian noise with

zero mean and variance N
2 σ

2. |ηk,1(µ̂)|2 obeys exponential
distribution with the mean N

2 σ
2. Then (23) can be simplified
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as

E{V 2} =

Nr∑
k=1

|hiST,k|2 E
{
|ηk,1(µ̂)|2 + |ηk,2(µ̂)|2

}
= Nσ2

Nr∑
k=1

|hiST,k|2 . (24)

After substituting CTP expression P (Z > 1) with (24), we
have

P (Z > 1) = P

(
Nr∑
k=1

|hiST,k|2 >
4

N

1

SNR

)

= 1−

(
1− e−

4
N

1
SNR

Nr−1∑
m=0

(
4
N

1
SNR

)m
Γ(m+ 1)

)Nt

≈ 1−
(

4
N

1
SNR

)NrNt

(Γ(Nr + 1))
Nt

. (25)

The detailed derivation of (25) is shown in Appendix A.
From (25), it can be found that CTP of Nt×Nr is proportional
to the product of the number of transmit and receive antennas,
which means that the full diversity gain is achieved by the
proposed ST/MRC scheme.

C. ∀ Nt and Nr = 1 with ST only

In order to know the performance gain of ST scheme, CTP
expression in (25) for Nt × 1 antenna configuration can be
written as

P (Z > 1) = 1−(1−e−
4
N

1
SNR )Nt ≈ 1−

(
4

N

1

SNR

)Nt

. (26)

It can be found that the CTP in (26) is proportional to the
number of transmit antennas, which means that the transmitter
diversity gain is achieved by ST scheme. Clearly, (26) is equal
to (20) when Nt = 1.

D. ∀ Nt and Nr = 1 with maximum ratio transmitting (MRT)

In this part we compare the ST/MRC scheme with MRT
for one receive antenna. In this case, after passing through
the channel the two identical halves at the received antenna is
represented as

y1(µ) =
1√
Nt

Nt∑
i=1

hi,1ci(µ− µ̂) + w1(µ), (27)

where the factor 1√
Nt

is used to normalize the transmit power
in order to compare ST/MRC scheme and non-ST scheme
fairly. ci(µ−µ̂) is the received synchronization sequence from
the i-th transmit antenna. Using (27) for CTP analysis of MRT
scheme, P (Z > 1) for Nt × 1 antenna is derived as

P (Z > 1) = P

(
Nt∑
i=1

|hi,1|2 >
4

N

Nt

SNR

)
, (28)

where the CTP performance of MRT scheme is proportional
to
∑Nt

i=1 |hi,1|2, the sum of the fading channel power between
the i-th transmit antenna and the receive antenna. The reason
is that our proposed timing metric in (7) is directly related

to the channel power. Considering the p.d.f. of
∑Nt

i=1 |hi,1|2
given by Eq. (7.18) in [28], CTP function of MRT scheme is
derived as

P (Z > 1) =

∫ ∞

4
N

Nt
SNR

1

Γ(Nt)
xNt−1e−xdx

= e−
4
N

Nt
SNR

Nt−1∑
m=0

4
N

Nt

SNR

m

Γ(m+ 1)

≈ 1− Nt
Nt

Γ(Nt + 1)

(
4

N

Nt

SNR

)Nt

. (29)

It can be shown that MRT scheme is degraded by a factor
of Nt

Nt

Γ(Nt+1) ≥ 1 compared with ST scheme in (26). Thus
ST at the transmitter has the better timing performance than
MRT. Meanwhile, MRT has the stringent requirement for the
orthognality among synchronization sequences to achieve the
performance gain. Since the timing detection range of Frank-
Zadoff-Chu code with the ideal cross-correlation function is
limited to 0, . . . , N/(2Nt) − 1, it is observed that the timing
detection range decreases as the number of transmit antenna
increases. Thus ST scheme is superior to MRT scheme in
terms of both performance and feasibility.

E. Nt = 1 and ∀ Nr with MRC

In this case, we demonstrate the closed-form expression for
CTP with MRC scheme at the receiver. When Nt = 1, (25)
is the CTP performance of MRC, i.e.,

P (Z > 1) = e−
4
N

1
SNR

Nr−1∑
m=0

4
N

1
SNR

m

Γ(m+ 1)

≈ 1− 1

Γ(Nr + 1)

(
4

N

1

SNR

)Nr

. (30)

Comparing (29) with (30), it is clear that MRC at the
receiver can improve CTP performance more significantly than
MRT due to the additional term NNt

t in (29). This term is
caused by the transmit power normalization.

F. Error Timing Probability

The performance gain of CTP with ST/MRC scheme at high
SNR regimes can be quantified by the error timing probability
(ETP), which is defined as

ETP = 1− P (Z > 1). (31)

Then according to (26), (29) and (30), ETP for Nt×1 with
ST scheme, Nt× 1 with MRT scheme and 1×Nr with MRC
scheme can be respectively derived as:

ETP ST
Nt×1 ≈

(
4

N

1

SNR

)Nt

, (32)

ETPMRT
Nt×1 ≈ Nt

Nt

Γ(Nt + 1)

(
4

N

Nt

SNR

)Nt

, (33)

ETPMRC
1×Nr

≈ 1

Γ(Nr + 1)

(
4

N

1

SNR

)Nr

. (34)
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Comparing (32), (33) and (34), ETP for 1 × Nr antenna
configuration with MRC has the lowest error probability. It
is advantageous over ST scheme when Nr = Nt due to the
factor 1

Γ(Nr+1) . However, ETP for Nt × 1 with ST performs

better than MRT because of the factor Nt
Nt

Γ(Nt+1) .

IV. ST/MRC SCHEME FOR TIMING SYNCHRONIZATION IN
THE MULTIPATH FADING CHANNEL

Section II and III have investigated the proposed ST/MRC
scheme for timing synchronization in MIMO-OFDM systems
under the flat fading channel. Both the theoretical and numer-
ical analysis show that the proposed scheme is superior in this
scenario. In this section, we investigate the application of the
ST/MRC scheme for the timing synchronization in MIMO-
OFDM systems under the multipath fading channel.

First, we formulate the multipath fading channel model. The
CSI from the i-th transmit antenna to the k-th receive antenna
is represented as hi,k(τ) =

∑L−1
l=0 hi,k,lδ(τ − τl), where τl is

the discrete delay of path l and L is the total path number. The
ST principle under the multipath fading channel is the same
as that in the flat fading channel. That implies only one out
of Nt transmit antennas with the maximum total multipath
channel power at the receiver is selected. In the multipath
fading channel, (3) is modified as:

iST = argmax
1≤i≤Nt

(
Ti =

Nr∑
k=1

L−1∑
l=0

|hi,k,l|2
)
. (35)

The synchronization training sequence defined in (1) is
transmitted over antenna iST. At the receiver, the two identical
halves of the synchronization sequence for antenna k can be
generalized as

yk(µ) =

L−1∑
l=0

hiST,k,lc(µ− µ̂− τl) + wk(µ). (36)

The definition of the timing metric in the multipath fading
channel is identical with that in the flat fading channel refer-
ring to (7). Substituting (7) with (36), we obtain the timing
metric for antenna k in the multipath fading channel as

M̄k(µ)=

(
N

2

)2 L−1∑
l=0

|hiST,k,l|2 δ(µ− µ̂− τl)︸ ︷︷ ︸
useful signal

+η∗k,1(µ)ηk,2(µ)︸ ︷︷ ︸
2nd−order noise

+
N

2

L−1∑
l=0

[
hiST,k,lη

∗
k,1(µ) + h∗

iST,k,lηk,2(µ)
]
δ(µ− µ̂− τl)︸ ︷︷ ︸

1st−order noise

(37)

It is observed that the timing metric expression under the
multipath fading channel is different from that under the flat
fading channel. There are more than one peak, which locates
at each delay tap. Fig. 5 presents one example of the timing
metric of 1 × 1 antenna configuration with SNR equal to 0
dB in the multipath fading channel. The statistic parameters
of the multipath channel are based on pedestrian channel B in
[32] as listed in Table II. It is noted that different from Fig.
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Fig. 5. One example of the absolute values of timing metric over 1 × 1
multipath fading channel

3, there are three peaks in the multipath fading channel. One
of them locates at the correct timing index µ̂ = 10 with the
smaller value than the strongest path. The peaks at µ = 11 and
µ = 12 are generated by the second to the fourth paths with the
sampling delay τ = 1 and τ = 2. According to (37), one peak
should appear at µ = 14. But it attenuates below the noise level
due to the deep fading. The other small peaks are not the useful
signal but noise. Fig. 5 reveals that the timing estimation in
the multipath fading channel has significant differences from
that in the flat fading channel.

More importantly, Fig. 5 illustrates that each peak has
the coefficient

(
N
2

)2 |hiST,k,l|2, which is proportional to the
channel power of path l between the iST transmit antenna and
the k-th receive antenna. Then according to the MRC scheme,
the timing metric for each receive antenna is added coherently
at the receiver, which is presented as:

M̄MRC(µ) =

Nr∑
k=1

M̄k(µ). (38)

In our simulation, the third peak corresponds to the strongest
path, however we need to find the first path of the multipath
fading channel. Thus the next step is to search for the timing
metric peak of the first path from several peaks and to estimate
the correct timing index, which is mathematically represented
as:

µ̃ = F
(
M̄MRC(µ)

)
(39)

where F (·) represents the method to detect the timing metric
peak of the first path from several peaks in the multipath fading
channel. The schemes are usually composed of the multipath
delay estimation and the first path delay searching with the
thresholds [30], [33], [34]. They involve setting the empirical
values of the threshold. Thus it is difficult to find the closed-
form expression for ETP or CTP with ST/MRC scheme under
the multipath fading channel. Therefore, different from the
analysis in the flat fading channel, the timing performance of
the ST/MRC scheme in the multipath fading channel is validat-
ed by simulations. However, because the proposed ST/MRC
scheme coherently enhances the power at the multipath delays
in the timing metric (38), the SNR level is increased. Thus
we could expect the ST/MRC scheme will improve the timing
performance no matter what kind of detection scheme is used
in (39).
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V. SIMULATION RESULTS AND ANALYSIS

This section investigates the performance of different an-
tenna diversity schemes by Monte-Carlo simulations. The
simulation parameters are listed in Table I.
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Fig. 6. Theoretical ETP comparisons for different antenna configurations

Fig. 6 demonstrates the theoretical error timing probability
comparisons for different antenna configurations in the flat
fading channel. It is noted that the 1×1 antenna configuration
(Line A) has the highest ETP, i.e., the worst timing perfor-
mance. As the number of antennas increases, ETP becomes
smaller dramatically. Thus increasing the number of antennas
is an effective way to enhance the timing synchronization
performance in the MIMO-OFDM systems. By comparing
Line B (2ST×1, Eq. (32)), Line C (1×2MRC, Eq. (34)) and
Line D (2MRT×1, Eq. (33)), we see that MRC scheme has
the lowest error probability. Clearly, the number of antennas
at the receiver affect the performance more significantly. It is
also observed that for a given number of antennas, ST/MRC
scheme (Line F) always has the best timing synchronization
performance and achieves the full diversity order as shown in
Eq. (25), which proves the superiority of our proposed scheme
theoretically. The timing synchronization performance of ST
scheme (Line B and Line E) is worse than that of ST/MRC
scheme. The MRT scheme (Line D and Line G) has the worst
timing synchronization performance because it requires the
transmit power normalization as indicated in Eq. (29).

Fig. 7 shows the comparison between the theoretical analy-
sis and the simulation results with different diversity schemes
in the flat fading channel. Doppler filter method is utilized
to produce the Channel Impulse Response (CIR) samples and
the channel correlation between multiple antennas is zero [35].
2000 drops and 1000 frames in each drop are performed. It is
observed that the analytical curve and the simulation curve are
closely matched for 1× 1 antenna configuration (Line A and
Line K), which validates our theoretical analysis. There is a
gap between the analytical curves and the simulation curves for
other antenna configurations. Such a gap is mainly caused by
the approximation operation in order to facilitate the analysis
of error or correct timing performance. That is the higher order
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Fig. 7. Theoretical analysis and simulation ETP comparisons with different
diversity schemes in the flat fading channel

noise is omitted and this operation will lead to the overesti-
mation of the theoretical timing performance. Especially as
the antenna number increases, there are more noises and such
omission will introduce a slightly increased gap between the
analytical and the simulation results. Moreover, it is assumed
that the auto-correlation characteristic of the synchronization
sequence is perfect during the analysis. But in the simulation,
the large time shift of the synchronization sequence causes that
only part of the synchronization training sequence is left and
at the same time some of the OFDM symbols move into the
correlation window. Thus the completeness of synchronization
sequence is destroyed and the timing performance in the
simulation becomes worse. But the analytical curves and the
simulation curves are almost parallel for MRT scheme (Line
B and Line G), ST scheme (Line C and Line F), MRC scheme
(Line D and Line H) and ST/MRC scheme (Line E and Line
J), which indicates that the analytical curves can reflect the
performance of each diversity scheme in practice. Among
all diversity schemes, the proposed ST/MRC scheme has the
lowest ETP for both theoretical and simulation results.

Fig. 8 shows that the simulation performances of CTP with
different diversity schemes in the multipath fading channel.
The SCM channel model is used to produce the CIR samples.
The statistic parameters of the channel are given in Table II.
The power is normalized for the multiple paths. The method
in [33] is utilized to detect the first path and to finish the
timing estimation based on the ST/MRC scheme in (38). The
empirical values of Eq. (19) in [33] are set as 20 dB and 3
dB, i.e., Γ1 = 20 dB and Γ2 = 3 dB. The performances of
different diversity schemes in the multipath fading channel
are in accordance with results in the flat fading channel.
2 × 1 antenna configuration with ST scheme (Line B) has
better timing synchronization performance than that of 1 × 1
antenna configuration (Line A) because ST scheme always
chooses the antenna with the highest channel power for the
synchronization sequence. From the simulation, it is observed
that increasing the number of the antenna is an efficient way to
enhance the performance of timing synchronization especially
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Fig. 8. Simulation CTP comparison with different diversity schemes in the
multipath fading channel

increasing the number of the antenna at the receiver. Finally,
we can conclude that in the multipath fading channel, the
proposed ST/MRC scheme (Line D) still has the best timing
synchronization performance due to the diversity gains from
both the transmitter and the receiver.

VI. CONCLUSION

In this paper we proposed the ST/MRC scheme, which
combines ST at the transmitter and MRC at the receiver to
improve the timing synchronization performance of MIMO-
OFDM systems in both flat fading channels and multipath
fading channels. Firstly, by utilizing the statistic characteristics
of the noise, we have derived the closed-form expression
for correct timing probability in the flat fading channel with
respect to cases: A. Nt = 1 and Nr = 1. B. ∀ Nt and
∀ Nr with ST/MRC. C. ∀ Nt and Nr = 1 with ST. D.
∀ Nt and Nr = 1 with MRT. E. Nt = 1 and ∀ Nr

with MRC. The expression for case B reveals that CTP for
ST/MRC is proportional to the product of Nt and Nr. Thus
it can be concluded that our proposed ST/MRC scheme for
timing synchronization can achieve the full diversity gain.
The comparison between case C and case D indicates that
ST scheme is advantageous over MRT because normalization
of the transmit power is required for MRT. The closed-form
expression for error timing probability in high SNR regimes
is derived in case E. Then ST/MRC scheme is investigated in
the multipath fading channel. Finally, the simulation results in
both flat fading and multipath fading channels present that
the theoretical analysis is in accordance with Monte-Carlo
simulation results, which validates our theoretical analysis for
timing synchronization with different antenna configurations
and diversity schemes. The simulation results demonstrate the
superiority of our proposed ST/MRC scheme over other diver-
sity schemes because the transmitter and receiver can achieve
the diversity gain simultaneously. Our proposed scheme is also
attractive in practice. It can reduce the number of RF chains
because only one antenna is selected at the transmitter. As a
result, the system complexity is reduced.

APPENDIX A
APPENDIX DERIVATION OF (25)

Notice that CTP of ST/MRC in (25) is related to the variable
TiST,k =

∑Nr

k=1 |hiST,k|2, i.e.,

P (Z > 1) = P

(
Nr∑
k=1

|hiST,k|2 >
4

N

1

SNR

)

= P

(
TiST,k >

4

N

1

SNR

)
=

∫ ∞

4
N

1
SNR

piST(x)dx, (40)

Considering the p.d.f. piST(x) given by (5), then we have CTP
of Nt ×Nr antenna configuration as

P (Z > 1)

=

∫ ∞

4
N

1
SNR

Nt

Γ(Nr)

(
1−e−x

Nr−1∑
k=0

xk

Γ(k + 1)

)Nt−1

xNr−1e−xdx

(41)

After integration, it is further expressed as

P (Z>1)=
Nt

Γ(Nr)

Nt−1∑
k=0

(−1)k
(
Nt − 1

k

)k(Nr−1)∑
m=0

αm(Nr, k)

×e−
4
N

k+1
SNR

Nr+m−1∑
j=0

Γ(j+1)
(
Nr+m−1

j

)
(k + 1)j+1

(
4

N

1

SNR

)Nr+m−1−j
 .

(42)

where
(
Nt−1

k

)
= Γ(Nt)

Γ(k+1)Γ(Nt−k) . αm(Nr, k) is the coeffi-

cient of xm after the expansion of
(∑Nr−1

i=0
xi

Γ(i+1)

)k
, m ∈

{0, . . . , k(Nr − 1)}.
Next, we give one example to show how to calculate the

coefficients. By defining f(x) =
(∑Nr−1

i=0
xi

Γ(i+1)

)k
and when

Nr = 3 and k = 2, it is

f(x) =

(
2∑

i=0

xi

Γ(i+ 1)

)2

=

(
x0

Γ(1)
+

x1

Γ(2)
+

x2

Γ(3)

)2

.

(43)
So αm(Nr, k) is the coefficient of xm, m ∈ {0, . . . , 4} as:

α0(3, 2) = 1, α1(3, 2) = 2, α2(3, 2) = 2,

α3(3, 2) = 1, α4(3, 2) = 1/4. (44)

From (42), it is difficult to find the relationship between
correct timing probability and the antenna number. In order to
get clear understanding, we rewrite (42) as

P (Z>1)=1−
Nt∑
k=0

(−1)k
(
Nt

k

)
e−

4
N

k
SNR

(
Nr−1∑
m=0

(
4
N

1
SNR

)m
Γ(m+ 1)

)k

=1−

(
1− e−

4
N

1
SNR

Nr−1∑
m=0

(
4
N

1
SNR

)m
Γ(m+ 1)

)Nt

.

(45)
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Then, the CTP has the simplified expression. We can further
take advantage of ex =

∑∞
n=0

xn

Γ(n+1) , then

P (Z>1) = 1−

{
1− e−

4
N

1
SNR

[
e

4
N

1
SNR −

(
4
N

1
SNR

)Nr

Γ(Nr + 1)

+o

((
1

SNR

)Nr
)]}Nt

≈ 1−
(

4
N

1
SNR

)NrNt

(Γ(Nr + 1))
Nt

.

(46)

Finally, the result in (25) is derived.
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TABLE I
THE SIMULATION PARAMETERS

Terms Values
Carrier frequency fc 2 GHz
Bandwidth B 1.28 MHz
Subcarrier spacing ∆fc 10 kHz
Subcarrier number N 128
OFDM symbol length Ts 100 µs
Cyclic prefix length TCP 3.125 µs
Length of training code 64

TABLE II
THE STATISTIC PARAMETERS OF THE MULTIPATH FADING CHANNEL

Terms Values
Path number 6
Power (dB) [0 -0.9 -4.9 -8.0 -7.8 -23.9]
Delay (ns) [0 200 800 1200 2300 3700]
Sampled delay = floor(Delay*1.28MHz) [0 0 1 1 2 4]


