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Abstract—In this paper, an implementable channel quantiza-
tion scheme that can effectively exploit both spatial and temporal
channel correlation for massive MIMO systems is proposed. In
limited feedback systems, differential quantization conducted by
applying skewing and rotations on a differential codebook is
effective on improving the overhead efficiency practically. To
apply these techniques in massive MIMO systems, we adopt
noncoherent trellis coded quantization (NTCQ) for Rayleigh
channel as a foundation. The inherent codebook of NTCQ
is defined and investigated thoroughly. Then we propose a
scheme that can produce a differential inherent codebook, which
makes adaptive skewing and rotations applicable. In numerical
simulations, compared to previous approaches on differential
NTCQ, superiority of the proposed scheme is significant. It needs
no prior statistical knowledge of channel correlation, while high
overhead efficiency can also be achieved. The results reveal that
in massive MIMO systems, if ideal channel state information at
user terminals is assumed to be available, precisely feeding them
back to base stations is practical within affordable overhead and
computations.

I. INTRODUCTION

Recently, scaling up the dimension of multiple-input,
multiple-output (MIMO) systems, which is literally called
massive MIMO, has gained a great deal of interest [1]. In
massive MIMO, since transmit beamforming has been con-
sidered as the optimal transmission technique, the channel
state information at the transmitter (CSIT) is important for
guiding the beam-vector generation [2]. In frequency division
duplexing (FDD) systems, due to the absence of channel
reciprocity, CSIT is usually obtained by quantizing the channel
direction vector at the user terminals (UTs) and feeding
quantized bits back to the base station (BS). Quantization
error may mislead the generation of beam-vector, causing
degradation in beamforming gain. Therefore, the design of
efficient and high quality limited feedback schemes is of great
value in massive MIMO.

To take advantage of channel correlation in small-scale
arrays, differential quantization schemes that based on skew-
ing and rotating differential codebooks (DCBs), e.g. random
vector quantization (RVQ) codebooks and Fourier-base code-
books, are well explored in [3], [4]. In [5], adaptive skewing is
proposed so that both temporal and spatial channel correlation
can be tracked and utilized directly without prior statistics.
On the other hand, if independent and identically distributed
(i.i.d.) Rayleigh channel is considered, the total of feedback
bits should be increased linearly with the number of antennas

[6], [7]. Based on this law, noncoherent trellis coded quantiza-
tion (NTCQ) that is efficient for massive MIMO application is
proposed in [8], [9] for i.i.d. Rayleigh channel. Utilizing trellis
coded modulation (TCM), minimum Euclidean distance (ED)
between codewords is maximized, and Viterbi algorithm can
be used to ensure that the complexity scales linearly to the
number of antennas. In [9], a differential NTCQ that need
prior statistical knowledge of spatial channel correlation is
mentioned. However, it is not convenient for implementation.

In this paper, we propose a differential quantization scheme
for massive MIMO channel. A deep insight into the equiv-
alence between ED based noncoherent codeword search and
chordal distance (CD) based codeword search is taken, and
the inherent codebook of NTCQ is defined. Then to make
the inherent codebook of proposed scheme suitable for DCB,
we introduce the definition of vertex dimension, and assign
particular constellation for this dimension. For other dimen-
sions, the trellis coded quantization (TCQ) is performed, while
the structure of TCM and Viterbi decoding is adotped as
the same as in NTCQ. Verified by average beamforming
gain under both first-order Gaussin-Markov channel model
and geometric-based channel models [10], [11], the proposed
scheme is shown to have better quantization performance than
differential NTCQ in [9], while the implementability is also
attractive for massive MU-MIMO systems. It is also shown
that, even with a small amount of antennas at BS, the proposed
scheme is still superior compared to preceding techniques.

The paper is organized as followed. The system model of
massive MIMO with limited feedback is given in Section II,
and various quantization schemes including NTCQ are also
briefly introduced in this part. In Section III, some analysis
on NTCQ is given and the proposed differential quantization
is detailed. Numerical results are provided in Section IV.
Conclusions are given in Section V.

II. PRELIMINARIES

A. System and Channel Model

We consider a block-fading massive MIMO downlink in
a microcell. One base station (BS) has NT transmit (Tx)
antennas and K active UTs. Each UT have one receive (Rx)
antenna, while NT � K. For this multiple-input single-output
(MISO) system, received signal for the kth UT at the ith fading



block can be written as

rk,i = ρhHk,ixi + nk,i, (1)

ρ is the Tx signal-to-noise ratio (SNR). hk,i ∈ CNT×1 is
the small scale fading channel from BS to the kth UT in the
ith block.1 xi ∈ CNT×1 is the transmitted signal at all NT
Tx antennas. nk,i is assumed to be zero-mean additive white
Gaussian noise with covariance E

[
|nk,i|2

]
= 1. Since the

quantization procedure is the same for all UTs, we omit the
suffix k subsequently for convenience.

In this work, first-order Gaussian-Markov (FOGM) channel
model is adopted for the spatially and temporally correlated
channel, written as

hi = ηhi−1 +
√

1− η2R
1
2 gi, (2)

where η is the time correlation coefficient, and R is the spatial
correlation matrix at the transmitter. gi is the uncorrelated
MISO channel vector with i.i.d. complex Gaussian entries.
Realistically, if the carrier frequency fc is set, η is mainly
affected by UT speed vUT, fading block interval T , and angles
of departure (AoD) distribution, while R is mainly affected
by the array manifold and AoD distribution.

B. Channel Quantization Schemes

To obtain optimal beamforming performance in massive
MIMO, the channel direction vector h̄i = hi

‖hi‖2
should be

quantized as ĥi and fed back to BS. Here ‖a‖2 denotes the
2-norm of a vector a. In the literature, differential quantization
is preferred for correlated channel as in (2). One approach is
to directly quantize fi = gi by applying quantization schemes
for i.i.d. Rayleigh channel. However, as shown in (2), this
approach needs the assumption of perfect knowledge on η and
R at both sides, which is impractical especially for the BS,
who has only partial CSIT. Another approach is to quantize
the chordal differential vector fi = ∆C

(
h̄i, ĥi−1

)
, which is

defined as

∆C

(
h̄i, ĥi−1

)
=
[
ĥi−1, ĥ

⊥
i−1

]H
h̄i. (3)

a⊥ denotes the NT×(NT − 1) space orthogonal to the NT×1
vector a. Then after quantizing fi as f̂i, ĥi is obtained as

ĥi =
[
ĥi−1, ĥ

⊥
i−1

]
f̂i. (4)

Subsequently, we use

Φi =
[
ĥi−1, ĥ

⊥
i−1

]
(5)

to denote the rotation matrix, and Φi should be unitary. 2

In this approach, DCB is needed for the quantization of fi.
Various definitions of DCB have been given in the literature.
In this work, the set of DCB Ω is defined as a set of codebook
WD that includes a vertex vector ζ = [1, 0, ..., 0]

T , written as

1hk,i is conjugate transposed in (1) for the convenience of notations in
transmit beamforming.

2In practice, a convenient method for calculating Φi is proposed in [4].

Ω = {WD, ζ ∈ WD}. Here ζ is defined as the first column
in the identity matrix I.

If arbitrary codebook W = {wt, t = 1, ..., Nc} is available
for BS and each UT, in quantization, the codeword wt that
has the minimal distance to fi is picked, written as

f̂i = arg min
wt∈W

[d (fi,wt)], (6)

and the corresponding index t is fed back in the form of
binaries bt = (t)2. Here (a)2 denotes the binary form of a
integer a. Nc is the codebook size, and lc = log2Nc is the
length of feedback bits.

Normally two kinds of distance are used for quantization
in (6). The chordal distance (CD) dC between two NT × 1
vectors a and b is defined as

dC(a,b) =

√
1− |aHb|2. (7)

The Euclidean distance (ED) is defined as

dE (a,b) = ‖a− b‖2 . (8)

For small BS arrays, CD is used in quantizing normalized
vectors, i.e. h̄i or fi. The search for optimal wt is conducted
by enumerating all codewords in W . This is not feasible for
massive MIMO, because its complexity scales exponentially
to Nc, while Nc should scale linearly to NT .

For massive MIMO, ED is used as an equivalent of CD in
NTCQ by introducing the noncoherent search [8]. The optimal
codeword for quantizing h̄i in i.i.d Rayleigh channel is chosen
as

ĥi = arg min
wt∈W

min
α∈R+

min
θ∈[0,2π)

[∥∥h̄i − αejθwt

∥∥
2

]
. (9)

Based on (9), TCM can be introduced for massive MIMO
to set up a mapping from feedback binaries bt = (t)2 to
modulated symbols wt, as bt = Q (wt). The convolutional
coded symbols for bt is,

wt = Q−1 (bt) = M (T (bt)) , (10)

where T and M denote the mappings from uncoded bits bt
to coded bits dt, and from dt to modulated symbols wt,
respectively. The structure of encoder T and Viterbi decoder
T−1 are omitted in this work due to limited space. M -ary
constellation ΞM =

{
1√
NT

ξm,E |ξm|2 = 1,m = 1, ...,M
}

is
used in modulation M, where ξm denotes a point in the M-ary
constellation. The length of bt depends on code rate rc, state
number S used in T and M in M, as

lc = rcNT log2M + log2 S. (11)

The quantization of h̄i can be viewed as the demodulation in
Euclidean space. Therefore, (9) can be implemented by Viterbi
algorithm and noncoherent search. In noncoherent search,
discrete sets {θp, p = 1, ..., Np} and {αq, q = 1, ..., Nq} are
set up, where θp ∈ [0, 2π) are uniformly chosen, and αq are
chosen according to ΞM . Then (9) is implemented as

ĥi = arg min
wt∈W

min
p,q

[∥∥h̄i − αqejθpwt

∥∥
2

]
. (12)

If NT is large, Np, Nq can be quite small as proved in [8].



III. ANALYSIS AND PROPOSED ALGORITHMS

A. On Euclidean Space and Inherent Codebook of NTCQ

Firstly we define the inherent codebook of NTCQ as

C =

{
ct =

wt

‖wt‖2
, t = 1, ..., Nc

}
. (13)

Nc = 2lc is the codebook size. The reason for normalizing
wt in (13) is given as follows. From [8, Eq. (4-7)], we have

arg min
wt∈W

min
α∈R+

min
θ∈[0,2π)

[∥∥h̄i − αejθwt

∥∥2

2

]
=arg min

wt∈W
min
α∈R+

[∥∥h̄i∥∥2

2
+ α2 ‖wt‖22 − 2α

∣∣h̄iwH
t

∣∣] (14)

=arg max
wt∈W

∣∣h̄iwH
t

∣∣2
‖wt‖22

. (15)

If we neglect the minimization on α and fix α = 1
‖wt‖2

in
(14), we can also have

arg min
wt∈W

[∥∥h̄i∥∥2

2
+ α2 ‖wt‖22 − 2α

∣∣h̄iwH
t

∣∣]
=arg max

wt∈W

∣∣h̄iwH
t

∣∣
‖wt‖2

. (16)

The equivalence of (15) and (16) is obvious. Therefore, we
have the following equivalence

ĥi = arg min
wt∈W

min
α∈R+

min
θ∈[0,2π)

[∥∥h̄i − αejθwt

∥∥
2

]
= arg min

ct∈C
min

θ∈[0,2π)

[∥∥h̄i − ejθct∥∥2

]
. (17)

(17) is generally not good for implementation, because
constellations with unequal amplitudes, e.g. 16QAM can be
used as ΞM in NTCQ, and in most cases, fixing α before
quantizing h̄i by Viterbi algorithm is not feasible. However,
for the purpose of analysis, since codewords in C have unit
norm, (17) provides a visual explanation on the equivalence
between ED and CD. On the surface of unit sphere in real
space, the relation between ED and CD can be illustrated as the
length of a chord between two points and the corresponding
radian. In complex space, the relation is quite the same, except
a phase differential θ that should be considered for parallel
noncoherent search, as in (17). Besides, M = 4 for QPSK
and M = 8 for 8PSK are two important exceptions satisfying
‖wt‖2 = 1 for arbitrary t. In practice, 1-bit/antenna or 2-
bits/antenna are usually favorable for quantizing h̄i, which
can be obtained by setting rc = 1/2 for QPSK or rc = 2/3
for 8PSK in T.

In Fig. 1, the inherent codewords of NTCQ with QPSK and
8PSK are illustrated. They all lie on the plain |w1| = |w2| =
... = |wNT |, while wnt is the ntth entry of wt. This is optimal
for i.i.d. Rayleigh channel, since each entry of h̄i shares the
same distribution. However, obviously, C /∈ Ω. For other M -
ary constellations, the case would be the same. Therefore,
NTCQ is not valid for the quantization of fi.

1 0 

2
1
3

 

3
2
3

 

4 1 

Constructed DCB 

Inherent Codebook of NTCQ

Vertex vector:  1,0,...,0 T

Fig. 1. Pre-skewing on NTCQ inherent codebook C to generate DCB VD .
By codebook skewing, multiple plain are added, including the vertex vector
ζ = [1, 0, ..., 0]T .

B. Differential Channel Quantization for Massive MIMO

In this section, we propose a practical differential channel
quantization scheme for massive MIMO. Firstly, we define the
vertex dimension τ as the non-zero dimension in the vertex
vector ζ. Clearly, τ = 1 in this work. From (3), we have

E
[
|fi,τ |2

]
= E

[∣∣∣ĥHi−1h̄i

∣∣∣2] (18)

= E
[∣∣h̄Hi−1h̄i

∣∣2]+ E
[
‖ei−1‖22

]
, (19)

where ei = h̄i− ĥi is the Euclidean estimation error at the ith
block, which is uncorrelated to h̄i. (19) is obtained from (18)
by using E [ei] = 0, and the entries of ei are uncorrelated.
Using results in [5], the first term in (19) can be written as

E
[∣∣h̄Hi−1h̄i

∣∣2] = η2+

(
1− η2

) NT∑
z=1

d2
z

2
NT∑
z=1

d2
z + 2

NT∑
z1=1

NT∑
z2=z1+1

dz1dz2

, (20)

where d1, ..., dNT are eigenvalues of R. η and R are defined
in (2). Therefore, it is a term indicating the strength of channel
correlation. The second term in (19) is merely the uncertainty
resulted from quantization error [3]. If hi−1 and hi are highly
correlated, fi is close to the vertex vector ζ, which inspires
designs of codebook skewing. We adopt codebook skewing as
in [5], where for each codeword vt ∈ VD ⊂ CNT×1, while
VD ∈ Ω, skewing operation S with factor εi is applied as

S (vt, εi) =



√√√√1− ε2
i

(
1− |vt,1|2

)
|vt,1|2

vt,1

εivt,2
...

εivt,NT


. (21)

According to (19), εi should be adaptively updated as [5]

εi = µ̄i−1 + εi−12
− lc
NT−1 , (22)



TABLE I
PRE-SKEWING FACTOR βv AND CONSTELLATION FOR VERTEX DIMENSION

ΞV TO GENERATE VD V = 16 (γv =
√

1− β2
v (NT − 1) /NT )

βv Constellation ΞV Quantization Index v
0 {1} {0}

1/3
{
γve

j kπ
3 , k = 0, ..., 5

}
{1, 2, 3, 4, 5, 6}

2/3
{
γve

j 2kπ
5 , k = 0, ..., 4

}
{7, 8, 9, 10, 11}

1
{
γve

j kπ
2 , k = 0, ..., 3

}
{12, 13, 14, 15}

where ε1 = 1. µ̄i is the estimation of E
[
dC
(
h̄i−1, h̄i

)]
at the

ith block for both BS and UTs, which satisfies µ̄1 = 0, and

µ̄i =
1

i− 1

i−1∑
k=1

√
1−

∣∣∣ĥkĥHk+1

∣∣∣2, i > 1. (23)

Now we need to construct a codebook VD = {vt, t =
1, ..., Nv} ∈ Ω for massive MIMO differential quantization.
To obtain ζ ∈ VD, we firstly assign a specific constellation
ΞV for quantizing the vertex dimension fi,τ , as

ΞV =
{
ξv = γve

jϕv , v = 1, ..., V
}
, (24)

where γv ∈
[
1/
√
NT , 1

]
and ϕv ∈ [0, 2π) are amplitudes and

phases for each symbol ξv . Then, utilizing TCM as the same
as in NTCQ, the codeword vt ∈ VD is constructed as

vt =

 ξv
βvw̃t

‖w̃t‖2

 , (25)

where βv is given as

βv =

√
(1− γ2

v)NT
NT − 1

, (26)

and w̃t ∈ W̃ ⊂ C(NT−1)×1 are constructed by symbols in
ΞM . Finally the corresponding quantized bits b̃t is constructed
as

b̃t = Q̃ (vt) =

[
(v)2

Q (w̃t)

]
, (27)

where Q is defined in (10). Obviously, if ξ1 = 1 is included
in ΞV , ζ ∈ VD can be achieved. The length of b̃t can be
calculated as

l̃c = rc (NT − 1) log2M + log2 S + log2 V, (28)

and Nv = 2l̃c .The construction of VD can also be viewed as
pre-skewing on the inherent codebook of NTCQ C, where βv is
the pre-skewing factor. An example of this is illustrated in Fig.
1, where small-scale array NT = 8 and QPSK constellation
M = 4 is used for convenience. Mapping of βv , ΞV and v
for this example is given in Table I.

An important issue for DCB in massive MIMO is the
constellations ΞV and ΞM . We notice that if hi−1 and hi
are highly correlated, εi is quite small in (22). In this case,
power in the rest NT−1 dimensions of fi is small, and wasting
bits on these dimensions is not wise. Therefore, usually QPSK

as M = 4 or 8PSK as M = 8 would be enough for ΞM in
constructing VD. For the vertex dimension, however, from the
perspective of implementation, we take noncoherent search for
fi similarly to (17), as

f̂i = arg min
vt∈VD

min
p

[∥∥fi − ejθpS (vt, εi)
∥∥

2

]
, (29)

where {θp, p = 1, ..., Np} is a predefined set. Substituting (21),
(25), (26) into (29), we have∥∥fi − ejθpS (vt, εi)

∥∥2

2

=

∣∣∣∣∣∣fi,τ −
√

1− ε2
iβ

2
v (NT − 1)

NT
e(ϕv+θp)

∣∣∣∣∣∣
2

+

∥∥∥∥fi,τ̄ − εiβvejθp wt

‖wt‖2
,

∥∥∥∥2

2

. (30)

Observing (30), we notice that βv is comprised in both part
of the squared ED, therefore, parallel search respected to βv
has to be performed. To minimize the branch number for βv ,
the constellation ΞV can be designed as follows. Firstly a set
of candidates for γv is given as

{γ̄1 = 1, γ̄Ns = χ, γ̄s ∈ (χ, 1) , s = 2, ..., Ns − 1} , (31)

where χ = 1√
NT

. Calculation of β̄s is similar to (26). Then
for each γ̄s, Us candidates of phases are given as

Ψs =
{
ϕ̄us = ej

2π(us−1)
Us , us = 1, ..., Us

}
. (32)

Specifically, Ψ1 = {ϕ̄1 = 1}, and U1 = 1. Then, for the vth
symbol in ΞV , we have

ξv = γ̄se
jϕ̄us , v =

s−1∑
k=1

Uk + us, (33)

and obviously, V =
∑Ns
s=1 Us. Table I gives an example for

this. The values for V and Ns are obtained by simulations.
Generally, as shown in the numerical results, V = 16 and
Ns = 4 is enough for 1 bit/antenna quantization.

Now we come back to the implementation of codeword
search as in (29) and (30), with ΞV obtained from (31), (32),
(33). For each pair (p, s), fi,τ is quantized as

f̂i,τ,p,s =

√
1− ε2

i β̄
2
s (NT − 1)

NT
e(ϕ̂p,s+θp), (34)

where

ϕ̂p,s = arg min
ϕus∈Ψs

∣∣∣∣∣∣fi,τ −
√

1− ε2
i β̄

2
s (NT − 1)

NT
e(ϕus+θp)

∣∣∣∣∣∣ . (35)

The quantization for the rest NT −1 dimensions fi,τ̄ is similar
to the quantization in i.i.d Rayleigh channel in (12). With
{αq, q = 1, ..., Nq} defined as the same as in NTCQ, we have

f̂i,τ̄ ,p,s = arg min
w̃t∈W̃

min
q

[∥∥fi,τ̄ − αqεiβvejθpw̃t

∥∥
2

]
, (36)



TABLE II
ALGORITHM SUMMARY

Algorithm: Differential quantization with adaptive skewing
for massive MIMO channel
Initialization in both BS and UT: ε1 = 1,Φ1 = I.
Quantization for h̄i at the ith block in UT:

Rotate h̄i as fi = ΦH
i h̄i.

for s = 1 : Ns
for p = 1 : Np

Quantize fi,τ by (34) and (35).
Quantize fi,τ̄ using (36).
Obtain the quantized f̂i,s as (37).

end
end
Obtain the quantized f̂i as (38).
Obtain estimated channel as ĥi = Φi f̂i.
Feedback b̃i as (27).

Reconstruction for ĥi at the ith block in BS:
Reconstruct vt by (25).
Skew vt by (21) to obtain f̂i.
Obtain estimated channel as ĥi = Φi f̂i.

Updatings at the ith block in both BS and UT:
Update εi+1 by (22) and (23).
Update Φi+1 by (5).

where Viterbi algorithm can be applied. Finally, the quantized
result in the (p, s)th branch is obtained as

f̂i,p,s =

f̂i,τ,p,s, εiβ̄sf̂Ti,τ̄ ,p,s∥∥∥f̂i,τ̄ ,p,s∥∥∥
2

T , (37)

and the overall optimum is obtained as

f̂i = min
p

min
s

∥∥∥fi − ejθp f̂i,p,s∥∥∥
2
. (38)

Notice that if QPSK or 8PSK are used as ΞM , αq in (36)
can be dropped to reduce complexity. The Pseudo-code for
the proposed differential quantization is summarized in Table
II.

IV. NUMERICAL RESULTS

In this section, Monte-Carlo simulation is performed to eval-
uate the performance of the proposed algorithm. Both FOGM
channel model and geometry-based standard channel model
are adopted, and as a alternative in massive MIMO channel
quantization, NTCQ in [8], [9] are compared. For each model,
the block interval TB is assumed as TB = TfdNT /Npilote,
where dae denotes the minimal integer not smaller than a.
Npilot = 4 is the maximum number of antenna that can be
estimated in a subframe, and Tf = 5 [ms] is the subframe
interval. The carrier frequency is fixed at fc = 2.4 [GHz].
For simplicity, feedback delay is not considered. In massive
MIMO, where NT = 100, performance metric is set as the
average beamforming gain in dB scale, defined as

Javg = 10 log10

(
E
[∣∣∣hHi ĥi

∣∣∣2]) . (39)

For FOGM channel, NTCQ with QPSK, NTCQ with 8PSK
and differential NTCQ with QPSK are compared to the
proposed differential quantization. In (2), η is given by Jakes

TABLE III
STANDARD MODEL PARAMETERS

Parameters Value
Scenario Urban micro-cell (UMi)

Propagation Condition non-line-of-sight (NLOS)
Number of paths 19 [11]

Elevation AS of departure (EASD) [degree] 4 [10]
Azimuth AS of departure (AASD) [degree] 25.7 [11]

Power angular spectrum (PAS) Wrapped Gaussian [11]
Azimuth Radiation direction [degree] [−60, 60]
Elevation Radiation direction [degree] [−45, 45]

Antenna spacing [m] 0.0625
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NTCQ with QPSK (102−bits)
NTCQ with 8PSK (203−bits)
v=0.1 [km/h], DNTCQ with QPSK (106−bits)
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Fig. 2. Javg as a function of fading block index. Proposed scheme with
M = 4, V = 4 is compared to NTCQ and DNTCQ under different temporal
correlation.

model, given as η = J0 (2πfDTB), where J0(·) is the 0th
order Bessel function, and fD denotes the maximum Doppler
frequency. R is assumed to be modeled as

R =


1 r · · · rNT−1

r† 1
...

. . .
r(NT−1)† r 1

 , (40)

where |r| = 0.5, and the phase of r is uniformly gen-
erated for 0 to 2π. We plot the average beamforming
gain for one UT when vUT ∈ {0.1, 0.5, 3} [km/h], and
η ∈ {0.9924, 0.8185,−0.0979} consequently. In Fig. 2, basic
NTCQ with QPSK and 8PSK, or differential NTCQ (DNTCQ)
with QPSK are compared to the proposed quantization with
QPSK. It is shown that the proposed scheme outperforms
DNTCQ with almost the same overhead. After a few feedback
intervals for ”initialization”, they can also outperform basic
NTCQ with 8PSK in quasi-static channel as vUT = 0.1
[km/h], which shows the effectiveness of exploiting channel
correlation. Moreover, even when temporal correlation is low,
as vUT = 3 [km/h], their performance is not worse than basic
NTCQ with the same overhead.

For standard models, we adopt ITU-R channel model [11]
and WINNER+ channel model [10] to simulate the realistic
transmission environment, where limited angular spread (AS)
is often observed in channel measurements. 10 × 10 uniform
planar array (UPA) is used, and parameters are summarized
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Fig. 3. Javg as a function of fading block index. Proposed scheme with
M = 4 is compared to NTCQ under realistic channel correlation.

in Table III. In Fig. 3, basic NTCQ with QPSK and 8PSK
are compared to the proposed quantization with QPSK. For
DNTCQ, η is not explicitly given here, and methods for
estimation on η are missing in [9], so it is not compared as
a alternative here. It is shown that in realistic environment,
the proposed quantization method can effectively exploit the
spatial correlation. It can be also observed that increasing V
is not beneficial to the performance in the proposed scheme.

If small-scale array is considered, and MIMO zero-forcing
precoding (ZFP) is applied, sum rate capacity is used as a
performance metric, written as

CZFP =

K∑
k=1

log2

1 +

ρ
K

∣∣∣h̄Hk,ivk,i∣∣∣2
ρ
K

∑K
j=1,j 6=k

∣∣∣h̄Hk,ivj,i∣∣∣2 + 1

 , (41)

where K is the number of UTs, and vk,i, k = 1, ...,K is
a the ZFP beam vector selected as a unit vector orthogonal
to the row vector subspace Sk,i = span

{
ĥHj,i : j 6= k

}
. Here

suffixes k and j denote the UT indexes. In Fig. 4, a downlink
transmission in realistic environment with K = 8 is simulated,
where 4 × 2 PLA is used. The proposed method with QPSK
is compared with RVQ [6], basic NTCQ [8] and adaptive
skewing [5]. For the preceding techniques, it is shown that
under pedestrian velocity, superiority of basic NTCQ with
8PSK is obvious against RVQ based method due to the
minimum-ED maximization property. We can also observe that
this superiority is even enlarged in the proposed quantization,
as the performance reaches about 2/3 of maximal capacity in
ideal CSIT. These demonstrate that the proposed scheme can
also be applied in small-scale arrays.

V. CONCLUSIONS

In this paper, a practical differential quantization scheme
for massive MIMO systems is designed. The complexity
of this scheme scales linearly to the number of antennas,
while adaptive skewing that needs no prior knowledge on
channel correlation statistics can be performed on a designed
DCB. Simulation results confirm that the proposed scheme
outperforms preceding approach on differential NTCQ, and is
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Fig. 4. Capacity of ZFP when element number of Tx array NT = K = 8,
UT moving speed v = 0.1 km/h and SNR = 25 dB.

effective in realistic propagation. It is a good candidate for
future massive MIMO applications.
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